From 50edc956a207f75733272b0ab5bc7bad3dba0f37 Mon Sep 17 00:00:00 2001 From: Kyle Conroy Date: Fri, 23 Apr 2021 11:00:01 -0400 Subject: [PATCH] mvgaussian uncertainties bugfix (0.3.1 release) (#8) * fix to treat mvgaussian uncertainties from percentiles like other distribution types --- distl/distl.py | 41 +---------------------------------------- setup.py | 2 +- 2 files changed, 2 insertions(+), 41 deletions(-) diff --git a/distl/distl.py b/distl/distl.py index 257cb94..d100486 100644 --- a/distl/distl.py +++ b/distl/distl.py @@ -45,7 +45,7 @@ else: _has_dill = True -__version__ = '0.3.0' +__version__ = '0.3.1' version = __version__ _math_symbols = {'__mul__': '*', '__add__': '+', '__sub__': '-', @@ -6737,45 +6737,6 @@ def ndimensions(self): """ return len(self.mean) - - def uncertainties(self, sigma=1, tex=False, dimension=None): - """ - Expose (symmetric) uncertainties for the distribution(s) at a given - value of `sigma` directly from and . - - Arguments - ----------- - * `sigma` (int, optional, default=1): number of standard deviations to - expose. - * `tex` (bool, optional, default=False): return as a formatted latex - string. - * `dimension` (int or string, optional, default=None): the label or index - of the dimension to use. - - Returns - --------- - * if not `tex`: a list of triplets where each triplet is lower, median, upper - * if `tex`: object with and properties. - - """ - - if dimension is None: - dimensions = range(self.ndimensions) - else: - dimensions = [self._get_dimension_index(dimension)] - - if tex: - labels = [self.labels[d] if self.labels is not None else None for d in dimensions] - labels_latex = [self.labels_latex[d] if self.labels is not None else None for d in dimensions] - units = [self.units[d] if self.units is not None else None for d in dimensions] - means = [self.mean[d] for d in dimensions] - diagonal = self.cov.diagonal() - diagonals = [diagonal[d]*sigma for d in dimensions] - return _format_uncertainties_symmetric(labels, labels_latex, units, means, diagonals) - else: - return [[self.mean[i]-self.cov[i][i]*sigma, self.mean[i], self.mean[i]+self.cov[i][i]*sigma] for i in dimensions] - - def slice(self, dimension): """ Take a single dimension from the multivariate distribution while diff --git a/setup.py b/setup.py index 9f379d5..fa250c9 100644 --- a/setup.py +++ b/setup.py @@ -6,7 +6,7 @@ long_description = fh.read() setup(name='distl', - version='0.3.0', + version='0.3.1', description='Simple Distributions: math operations, serializing, covariances', long_description=long_description, long_description_content_type="text/markdown",