-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.html
848 lines (838 loc) · 58.9 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<!-- README.md is generated from README.Rmd. Please edit that file -->
<h1 id="modelrecon">modelrecon</h1>
<p>The goal of modelrecon is to apply thresholds to predicted
probabilities and calculate net benefit in the presence of resource
constraints.</p>
<h2 id="installation">Installation</h2>
<p>You can install the released version of modelrecon from GitHub
with:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>remotes<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">'ML4LHS/modelrecon'</span>)</span></code></pre></div>
<h2 id="get-started">Get started</h2>
<p>Let’s load the package and generate and example dataset containing
the probability of an adverse outcome and whether or not that outcome
was experienced (<code>TRUE</code>) or not experienced
(<code>FALSE</code>).</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(modelrecon)</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(ggplot2)</span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a>example_data <span class="ot">=</span> <span class="fu">data.frame</span>(<span class="at">probability =</span> <span class="fu">c</span>(<span class="fl">0.8</span>, <span class="fl">0.7</span>, <span class="fl">0.6</span>, <span class="fl">0.5</span>, <span class="fl">0.3</span>, <span class="fl">0.2</span>, <span class="fl">0.1</span>, <span class="fl">0.1</span>, <span class="fl">0.05</span>, <span class="fl">0.01</span>),</span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a> <span class="at">outcome =</span> <span class="fu">c</span>(T, T, F, T, T, F, F, F, T, F))</span></code></pre></div>
<h2 id="what-does-our-example-dataset-look-like">What does our example
dataset look like?</h2>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>example_data</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="co">#> probability outcome</span></span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.80 TRUE</span></span>
<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.70 TRUE</span></span>
<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.60 FALSE</span></span>
<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.50 TRUE</span></span>
<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.30 TRUE</span></span>
<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.20 FALSE</span></span>
<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a><span class="co">#> 7 0.10 FALSE</span></span>
<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a><span class="co">#> 8 0.10 FALSE</span></span>
<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a><span class="co">#> 9 0.05 TRUE</span></span>
<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a><span class="co">#> 10 0.01 FALSE</span></span></code></pre></div>
<h2 id="lets-apply-a-threshold-of-02">Let’s apply a threshold of
0.2</h2>
<p>This means we will call all predictions with a probability >= 0.2
as <code>TRUE</code>.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>example_data <span class="sc">%>%</span> </span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.2</span>)</span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> probability outcome prediction met_threshold</span></span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.80 TRUE TRUE 0.2</span></span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.70 TRUE TRUE 0.2</span></span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.60 FALSE TRUE 0.2</span></span>
<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.50 TRUE TRUE 0.2</span></span>
<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.30 TRUE TRUE 0.2</span></span>
<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.20 FALSE TRUE 0.2</span></span>
<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="co">#> 7 0.10 FALSE FALSE NA</span></span>
<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a><span class="co">#> 8 0.10 FALSE FALSE NA</span></span>
<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a><span class="co">#> 9 0.05 TRUE FALSE NA</span></span>
<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a><span class="co">#> 10 0.01 FALSE FALSE NA</span></span></code></pre></div>
<h2 id="lets-calculate-a-net-benefit-with-a-threshold-of-02">Let’s
calculate a net benefit with a threshold of 0.2</h2>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>example_data <span class="sc">%>%</span></span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.2</span>) <span class="sc">%>%</span></span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">calculate_net_benefit</span>()</span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 0.35</span></span></code></pre></div>
<h2 id="what-is-going-on-behind-the-scenes">What is going on behind the
scenes?</h2>
<p>Behind the scenes, the <code>calculate_net_benefit()</code> function
is calculating the number of true and false positives, and then using
that along with the previously applied threshold to calculate the net
benefit.</p>
<h3 id="how-did-calculate_net_benefit-know-about-the-threshold">How did
<code>calculate_net_benefit()</code> know about the threshold?</h3>
<p>This information is captured in the <code>thresholds</code>
attribute.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>example_data <span class="sc">%>%</span></span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.2</span>) <span class="sc">%>%</span></span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">attributes</span>() <span class="sc">%>%</span> </span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a> .<span class="sc">$</span>thresholds</span>
<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 0.2</span></span></code></pre></div>
<h3 id="want-more-information-about-the-number-of-true-and-false-positives">Want
more information about the number of true and false positives?</h3>
<p>Set the <code>verbose</code> argument of
<code>calculate_net_benefit()</code> to <code>TRUE</code>. This will
print, <em>not</em> return, a data frame with the information it used to
calculate the net benefit. The value returned is still the net
benefit.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>example_data <span class="sc">%>%</span></span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.2</span>) <span class="sc">%>%</span></span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">calculate_net_benefit</span>(<span class="at">verbose =</span> <span class="cn">TRUE</span>)</span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> # A tibble: 1 x 5</span></span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> met_threshold n true_positives false_positives nb</span></span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> <dbl> <int> <int> <int> <dbl></span></span>
<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.2 10 4 2 0.35</span></span>
<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 0.35</span></span></code></pre></div>
<h2 id="what-happens-when-you-apply-an-absolute-constraint">What happens
when you apply an absolute constraint?</h2>
<p>Two of the five predicted <code>TRUE</code> values are converted to
<code>FALSE</code> because only the first 3 <code>TRUE</code> values
(those with the highest predicted probability) are able to be acted
upon.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>example_data <span class="sc">%>%</span></span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.2</span>) <span class="sc">%>%</span></span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_constraint</span>(<span class="dv">3</span>)</span>
<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> probability outcome prediction met_threshold</span></span>
<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.80 TRUE TRUE 0.2</span></span>
<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.70 TRUE TRUE 0.2</span></span>
<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> 3 0.60 FALSE TRUE 0.2</span></span>
<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="co">#> 4 0.50 TRUE FALSE NA</span></span>
<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a><span class="co">#> 5 0.30 TRUE FALSE NA</span></span>
<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a><span class="co">#> 6 0.20 FALSE FALSE NA</span></span>
<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a><span class="co">#> 7 0.10 FALSE FALSE NA</span></span>
<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a><span class="co">#> 8 0.10 FALSE FALSE NA</span></span>
<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a><span class="co">#> 9 0.05 TRUE FALSE NA</span></span>
<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a><span class="co">#> 10 0.01 FALSE FALSE NA</span></span></code></pre></div>
<h2 id="calculate-a-realized-net-benefit-with-a-threshold-of-02-and-an-capacity-of-3">Calculate
a realized net benefit with a threshold of 0.2 and an capacity of 3</h2>
<p>This is an example of an <em>absolute</em> constraint.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>example_data <span class="sc">%>%</span></span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.2</span>) <span class="sc">%>%</span></span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_constraint</span>(<span class="dv">3</span>) <span class="sc">%>%</span></span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">calculate_net_benefit</span>(<span class="at">verbose =</span> <span class="cn">TRUE</span>)</span>
<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> # A tibble: 1 x 5</span></span>
<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> met_threshold n true_positives false_positives nb</span></span>
<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> <dbl> <int> <int> <int> <dbl></span></span>
<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.2 10 2 1 0.175</span></span>
<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 0.175</span></span></code></pre></div>
<h2 id="calculate-a-realized-net-benefit-with-an-absolute-threshold-of-02-and-capacity-of-3-and-then-a-relative-constraint-of-05">Calculate
a realized net benefit with an absolute threshold of 0.2 and capacity of
3, and <em>then</em> a relative constraint of 0.5:</h2>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>example_data <span class="sc">%>%</span></span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.2</span>) <span class="sc">%>%</span></span>
<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_constraint</span>(<span class="dv">3</span>) <span class="sc">%>%</span></span>
<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.5</span>) <span class="sc">%>%</span></span>
<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">calculate_net_benefit</span>(<span class="at">verbose =</span> <span class="cn">TRUE</span>)</span>
<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> # A tibble: 2 x 5</span></span>
<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> met_threshold n true_positives false_positives nb</span></span>
<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a><span class="co">#> <dbl> <int> <int> <int> <dbl></span></span>
<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a><span class="co">#> 1 0.2 10 2 1 0.175</span></span>
<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a><span class="co">#> 2 0.5 10 1 0 0.1</span></span>
<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 0.275</span></span></code></pre></div>
<h2 id="the-default-assumption-when-we-set-a-threshold-without-a-subsequent-constraint-is-that-the-capacity-is-infinite">The
default assumption when we set a threshold without a subsequent
constraint is that the capacity is infinite.</h2>
<p>You can also explicitly note the infinite capacity, which will be
applied only to the immediate prior threshold.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>example_data <span class="sc">%>%</span></span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.2</span>) <span class="sc">%>%</span></span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_constraint</span>(<span class="dv">3</span>) <span class="sc">%>%</span></span>
<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.5</span>) <span class="sc">%>%</span></span>
<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_constraint</span>(<span class="cn">Inf</span>) <span class="sc">%>%</span> </span>
<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a> <span class="fu">calculate_net_benefit</span>()</span>
<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 0.275</span></span></code></pre></div>
<p>Using this mechanism, you can construct multiple layers of absolute
and relative constraints as the piped functions retain metadata about
prior constraints and thus know that each constraint applies to only the
prior threshold.</p>
<p>You <em>cannot</em> apply a threshold that is <em>lower</em> than a
prior threshold because it would make no sense to apply a permissive
criterion <em>before</em> a more restrictive one.</p>
<h2 id="setting-a-new-threshold-that-is-lower-than-the-prior-one-will-generate-an-error">Setting
a new threshold that is lower than the prior one will generate an
error.</h2>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>example_data <span class="sc">%>%</span></span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.5</span>) <span class="sc">%>%</span></span>
<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_constraint</span>(<span class="dv">3</span>) <span class="sc">%>%</span></span>
<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.2</span>) <span class="sc">%>%</span></span>
<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">calculate_net_benefit</span>()</span>
<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> Error in apply_threshold(., 0.2): New threshold must be greater than previous maximum threshold of 0.5</span></span></code></pre></div>
<h2 id="setting-a-new-threshold-that-is-the-same-as-a-prior-one-will-generate-a-warning">Setting
a new threshold that is the same as a prior one will generate a
warning.</h2>
<p>In a future version, this may be upgraded to an error.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>example_data <span class="sc">%>%</span></span>
<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.2</span>) <span class="sc">%>%</span></span>
<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_constraint</span>(<span class="dv">3</span>) <span class="sc">%>%</span></span>
<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fl">0.2</span>) <span class="sc">%>%</span></span>
<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">calculate_net_benefit</span>()</span>
<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> Warning in apply_threshold(., 0.2): New threshold must be greater than previous maximum threshold of 0.2. Because the current threshold</span></span>
<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> is equal set threshold, previously added constraints at this threshold have been overwritten.</span></span>
<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 0.35</span></span></code></pre></div>
<h1 id="lets-plot-a-decision-curve-for-an-absolute-constraint-and-an-absolute--relative-constraint">Let’s
plot a decision curve for an absolute constraint, and an absolute +
relative constraint</h1>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>plot_data <span class="ot">=</span></span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">expand_grid</span>(<span class="at">constraint =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">5</span>, <span class="dv">7</span>, <span class="cn">Inf</span>),</span>
<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a> <span class="at">threshold =</span> <span class="fu">seq</span>(<span class="at">from =</span> <span class="dv">0</span>, <span class="at">to =</span> <span class="dv">1</span>, <span class="at">by =</span> <span class="fl">0.05</span>)) <span class="sc">%>%</span></span>
<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">group_by</span>(constraint, threshold) <span class="sc">%>%</span></span>
<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">net_benefit =</span> example_data <span class="sc">%>%</span></span>
<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(threshold) <span class="sc">%>%</span></span>
<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_constraint</span>(constraint) <span class="sc">%>%</span></span>
<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">calculate_net_benefit</span>()) <span class="sc">%>%</span></span>
<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">ungroup</span>()</span>
<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a><span class="co"># Vary absolute constraint and add relative constraint (up to threshold of 0.5)</span></span>
<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a>plot_data_2 <span class="ot">=</span></span>
<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a> <span class="fu">expand_grid</span>(<span class="at">constraint =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">5</span>, <span class="dv">7</span>, <span class="cn">Inf</span>),</span>
<span id="cb14-15"><a href="#cb14-15" aria-hidden="true" tabindex="-1"></a> <span class="at">threshold =</span> <span class="fu">seq</span>(<span class="at">from =</span> <span class="dv">0</span>, <span class="at">to =</span> <span class="fl">0.5</span>, <span class="at">by =</span> <span class="fl">0.05</span>)) <span class="sc">%>%</span></span>
<span id="cb14-16"><a href="#cb14-16" aria-hidden="true" tabindex="-1"></a> <span class="fu">group_by</span>(constraint, threshold) <span class="sc">%>%</span></span>
<span id="cb14-17"><a href="#cb14-17" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">net_benefit =</span> example_data <span class="sc">%>%</span></span>
<span id="cb14-18"><a href="#cb14-18" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(threshold) <span class="sc">%>%</span></span>
<span id="cb14-19"><a href="#cb14-19" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_constraint</span>(constraint) <span class="sc">%>%</span></span>
<span id="cb14-20"><a href="#cb14-20" aria-hidden="true" tabindex="-1"></a> <span class="fu">apply_threshold</span>(<span class="fu">pmax</span>(<span class="fl">0.5</span>, threshold)) <span class="sc">%>%</span></span>
<span id="cb14-21"><a href="#cb14-21" aria-hidden="true" tabindex="-1"></a> <span class="fu">calculate_net_benefit</span>()) <span class="sc">%>%</span></span>
<span id="cb14-22"><a href="#cb14-22" aria-hidden="true" tabindex="-1"></a> <span class="fu">ungroup</span>()</span>
<span id="cb14-23"><a href="#cb14-23" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-24"><a href="#cb14-24" aria-hidden="true" tabindex="-1"></a><span class="fu">bind_rows</span>(</span>
<span id="cb14-25"><a href="#cb14-25" aria-hidden="true" tabindex="-1"></a> plot_data <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="at">constraint_type =</span> <span class="st">'Absolute constraint'</span>),</span>
<span id="cb14-26"><a href="#cb14-26" aria-hidden="true" tabindex="-1"></a> plot_data_2 <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="at">constraint_type =</span> <span class="fu">paste0</span>(<span class="st">'Absolute constraint</span><span class="sc">\n</span><span class="st">'</span>,</span>
<span id="cb14-27"><a href="#cb14-27" aria-hidden="true" tabindex="-1"></a> <span class="st">'relaxed by relative</span><span class="sc">\n</span><span class="st">'</span>,</span>
<span id="cb14-28"><a href="#cb14-28" aria-hidden="true" tabindex="-1"></a> <span class="st">'constraint at threshold</span><span class="sc">\n</span><span class="st">'</span>,</span>
<span id="cb14-29"><a href="#cb14-29" aria-hidden="true" tabindex="-1"></a> <span class="st">'of 0.5'</span>))</span>
<span id="cb14-30"><a href="#cb14-30" aria-hidden="true" tabindex="-1"></a>) <span class="sc">%>%</span></span>
<span id="cb14-31"><a href="#cb14-31" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">constraint =</span> <span class="fu">if_else</span>(constraint <span class="sc">==</span> <span class="cn">Inf</span>, <span class="st">'Infinity'</span>, <span class="fu">as.character</span>(constraint))) <span class="sc">%>%</span></span>
<span id="cb14-32"><a href="#cb14-32" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">constraint =</span> <span class="fu">as.factor</span>(<span class="fu">paste</span>(<span class="st">'Capacity ='</span>,constraint))) <span class="sc">%>%</span></span>
<span id="cb14-33"><a href="#cb14-33" aria-hidden="true" tabindex="-1"></a> <span class="fu">filter</span>((constraint <span class="sc">==</span> <span class="st">'Capacity = 3'</span> <span class="sc">&</span> threshold <span class="sc">==</span> <span class="fl">0.2</span>) <span class="sc">|</span></span>
<span id="cb14-34"><a href="#cb14-34" aria-hidden="true" tabindex="-1"></a> (constraint <span class="sc">==</span> <span class="st">'Capacity = Infinity'</span> <span class="sc">&</span> threshold <span class="sc">==</span> <span class="fl">0.2</span>)) <span class="sc">%>%</span> </span>
<span id="cb14-35"><a href="#cb14-35" aria-hidden="true" tabindex="-1"></a> <span class="fu">slice</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>) <span class="sc">%>%</span> </span>
<span id="cb14-36"><a href="#cb14-36" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">text =</span> <span class="fu">c</span>(<span class="st">'Case study 2'</span>, <span class="st">'Case study 1'</span>, <span class="st">'Case study 3'</span>)) <span class="sc">%>%</span> </span>
<span id="cb14-37"><a href="#cb14-37" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">x =</span> <span class="fu">c</span>(<span class="fl">0.3</span>, <span class="fl">0.4</span>, <span class="fl">0.3</span>), <span class="at">y =</span> <span class="fu">c</span>(<span class="fl">0.05</span>, <span class="fl">0.4</span>, <span class="fl">0.33</span>)) <span class="ot">-></span> </span>
<span id="cb14-38"><a href="#cb14-38" aria-hidden="true" tabindex="-1"></a> point_data</span>
<span id="cb14-39"><a href="#cb14-39" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-40"><a href="#cb14-40" aria-hidden="true" tabindex="-1"></a><span class="fu">bind_rows</span>(</span>
<span id="cb14-41"><a href="#cb14-41" aria-hidden="true" tabindex="-1"></a> plot_data <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="at">constraint_type =</span> <span class="st">'Absolute constraint'</span>),</span>
<span id="cb14-42"><a href="#cb14-42" aria-hidden="true" tabindex="-1"></a> plot_data_2 <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="at">constraint_type =</span> <span class="fu">paste0</span>(<span class="st">'Absolute constraint</span><span class="sc">\n</span><span class="st">'</span>,</span>
<span id="cb14-43"><a href="#cb14-43" aria-hidden="true" tabindex="-1"></a> <span class="st">'relaxed by relative</span><span class="sc">\n</span><span class="st">'</span>,</span>
<span id="cb14-44"><a href="#cb14-44" aria-hidden="true" tabindex="-1"></a> <span class="st">'constraint at threshold</span><span class="sc">\n</span><span class="st">'</span>,</span>
<span id="cb14-45"><a href="#cb14-45" aria-hidden="true" tabindex="-1"></a> <span class="st">'of 0.5'</span>))</span>
<span id="cb14-46"><a href="#cb14-46" aria-hidden="true" tabindex="-1"></a> ) <span class="sc">%>%</span></span>
<span id="cb14-47"><a href="#cb14-47" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">constraint =</span> <span class="fu">if_else</span>(constraint <span class="sc">==</span> <span class="cn">Inf</span>, <span class="st">'Infinity'</span>, <span class="fu">as.character</span>(constraint))) <span class="sc">%>%</span></span>
<span id="cb14-48"><a href="#cb14-48" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">constraint =</span> <span class="fu">as.factor</span>(<span class="fu">paste</span>(<span class="st">'Capacity ='</span>,constraint))) <span class="sc">%>%</span></span>
<span id="cb14-49"><a href="#cb14-49" aria-hidden="true" tabindex="-1"></a> <span class="fu">ggplot</span>(<span class="fu">aes</span>(<span class="at">x =</span> threshold, <span class="at">y =</span> net_benefit,</span>
<span id="cb14-50"><a href="#cb14-50" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> constraint_type)) <span class="sc">+</span></span>
<span id="cb14-51"><a href="#cb14-51" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_line</span>() <span class="sc">+</span></span>
<span id="cb14-52"><a href="#cb14-52" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_point</span>(<span class="at">data =</span> point_data) <span class="sc">+</span></span>
<span id="cb14-53"><a href="#cb14-53" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_text</span>(<span class="at">data =</span> point_data,</span>
<span id="cb14-54"><a href="#cb14-54" aria-hidden="true" tabindex="-1"></a> <span class="fu">aes</span>(<span class="at">label =</span> text, <span class="at">x =</span> x, <span class="at">y =</span> y), <span class="at">size =</span> <span class="dv">3</span>) <span class="sc">+</span></span>
<span id="cb14-55"><a href="#cb14-55" aria-hidden="true" tabindex="-1"></a> <span class="fu">facet_wrap</span>(<span class="sc">~</span>constraint) <span class="sc">+</span></span>
<span id="cb14-56"><a href="#cb14-56" aria-hidden="true" tabindex="-1"></a> <span class="fu">coord_cartesian</span>(<span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.5</span>)) <span class="sc">+</span></span>
<span id="cb14-57"><a href="#cb14-57" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme_bw</span>() <span class="sc">+</span></span>
<span id="cb14-58"><a href="#cb14-58" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">axis.text =</span> <span class="fu">element_text</span>(<span class="at">size =</span> <span class="dv">6</span>)) <span class="sc">+</span></span>
<span id="cb14-59"><a href="#cb14-59" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">x =</span> <span class="st">'Threshold probability'</span>,</span>
<span id="cb14-60"><a href="#cb14-60" aria-hidden="true" tabindex="-1"></a> <span class="at">y =</span> <span class="st">'Realized net benefit'</span>,</span>
<span id="cb14-61"><a href="#cb14-61" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="st">'Constraint'</span>)</span></code></pre></div>
<img src="" width="100%" />
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="co"># ggsave('Figure 2.pdf',</span></span>
<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a><span class="co"># width = 6.5, height = 4, units = 'in')</span></span></code></pre></div>
</body>
</html>