-
Notifications
You must be signed in to change notification settings - Fork 27
/
runtests.py
executable file
·438 lines (326 loc) · 13.2 KB
/
runtests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
#!/usr/bin/env py.test
from __future__ import print_function, division
import math
from copy import deepcopy
import numpy as np
from numpy.random import RandomState
from numpy.testing import assert_allclose, assert_approx_equal
import pytest
import itertools
try:
from numpy.random import choice
HAVE_CHOICE = True
except ImportError:
HAVE_CHOICE = False
import nestle
SQRTEPS = math.sqrt(float(np.finfo(np.float64).eps)) # testing closeness to 1
NMAX = 20 # many tests are run for dimensions 1 to NMAX inclusive
def test_vol_prefactor():
assert nestle.vol_prefactor(1) == 2.
assert nestle.vol_prefactor(2) == math.pi
assert nestle.vol_prefactor(3) == 4./3. * math.pi
assert nestle.vol_prefactor(4) == 1./2. * math.pi**2
assert nestle.vol_prefactor(5) == 8./15. * math.pi**2
assert nestle.vol_prefactor(9) == 32./945. * math.pi**4
def test_rstate_kwarg():
"""Test that rstate keyword argument works as expected."""
rstate = RandomState(123)
a = nestle.randsphere(10, rstate=rstate)
np.random.seed(123)
b = nestle.randsphere(10)
assert np.all(a == b)
# TODO: test that points are uniform
def test_randsphere():
"""Draw a lot of points and check that they're within a unit sphere.
"""
rstate = RandomState(0)
npoints = 1000
for n in range(1, NMAX+1):
for i in range(npoints):
x = nestle.randsphere(n, rstate=rstate)
r = np.sum(x**2)
assert r < 1.0
@pytest.mark.skipif("not HAVE_CHOICE")
def test_random_choice():
"""nestle.random_choice() is designed to mimic np.random.choice(),
for numpy < v1.7.0. In cases where we have both, test that they agree.
"""
rstate = RandomState(0)
p = rstate.rand(10)
p /= p.sum()
for seed in range(10):
rstate.seed(seed)
i = rstate.choice(10, p=p)
rstate.seed(seed)
j = nestle.random_choice(10, p=p, rstate=rstate)
assert i == j
def test_random_choice_error():
"""random_choice should raise an error when probabilities do not sum
to one."""
rstate = RandomState(0)
p = rstate.rand(10)
p /= p.sum()
p *= 1.001
with pytest.raises(ValueError):
nestle.random_choice(10, p=p, rstate=rstate)
def test_ellipsoid_sphere():
"""Test that Ellipsoid works like a sphere when ``a`` is proportional to
the identity matrix."""
scale = 5.
for n in range(1, NMAX+1):
ctr = 2.0 * scale * np.ones(n) # arbitrary non-zero center
a = 1.0 / scale**2 * np.identity(n)
ell = nestle.Ellipsoid(ctr, a)
assert_allclose(ell.vol, nestle.vol_prefactor(n) * scale**n)
assert_allclose(ell.axlens, scale * np.ones(n))
assert_allclose(ell.axes, scale * np.identity(n))
def test_ellipsoid_vol_scaling():
"""Test that scaling an ellipse works as expected."""
scale = 1.5 # linear scale
for n in range(1, NMAX+1):
# ellipsoid centered at origin with principle axes aligned with
# coordinate axes, but random sizes.
ctr = np.zeros(n)
a = np.diag(np.random.rand(n))
ell = nestle.Ellipsoid(ctr, a)
# second ellipsoid with axes scaled.
ell2 = nestle.Ellipsoid(ctr, 1./scale**2 * a)
# scale volume of first ellipse to match the second.
ell.scale_to_vol(ell.vol * scale**n)
# check that the ellipses are the same.
assert_allclose(ell.vol, ell2.vol)
assert_allclose(ell.a, ell2.a)
assert_allclose(ell.axes, ell2.axes)
assert_allclose(ell.axlens, ell2.axlens)
def test_ellipsoid_contains():
"""Test Elipsoid.contains()"""
eps = 1.e-7
for n in range(1, NMAX+1):
ell = nestle.Ellipsoid(np.zeros(n), np.identity(n)) # unit n-sphere
# point just outside unit n-sphere:
pt = (1. / np.sqrt(n) + eps) * np.ones(n)
assert not ell.contains(pt)
# point just inside unit n-sphere:
pt = (1. / np.sqrt(n) - eps) * np.ones(n)
assert ell.contains(pt)
# non-equal axes ellipsoid, still aligned on axes:
a = np.diag(np.random.rand(n))
ell = nestle.Ellipsoid(np.zeros(n), a)
# check points on axes
for i in range(0, n):
axlen = 1. / np.sqrt(a[i, i]) # length of this axis
pt = np.zeros(n)
pt[i] = axlen + eps
assert not ell.contains(pt)
pt[i] = axlen - eps
assert ell.contains(pt)
def random_ellipsoid(n):
"""Return a random `n`-d ellipsoid centered at the origin
This is a helper function for other tests.
"""
# `a` in the ellipsoid must be positive definite, so we have to construct
# a positive definite matrix. For any real, non-singular matrix A,
# `A^T A` will be positive definite.
det = 0.
while abs(det) < 1.e-10: # ensure a non-singular matrix
A = np.random.rand(n, n)
det = np.linalg.det(A)
return nestle.Ellipsoid(np.zeros(n), np.dot(A.T, A))
def test_ellipsoid_sample():
"""Ensure that Ellipsoid.sample() returns samples in itself and make
some test that they are evenly distributed."""
nsamples = 1000 # don't make this too small
volfrac = 0.5 # sets inner ellipse size
for n in range(1, NMAX+1):
ell = random_ellipsoid(n) # random ellipsoid
ell2 = deepcopy(ell)
ell2.scale_to_vol(volfrac * ell2.vol) # smaller ellipsoid
# expected number of points that will fall within inner ellipsoid
expect = volfrac * nsamples
sigma = math.sqrt((1. - volfrac) * volfrac * nsamples) # normal approx.
# sample randomly. For each point, check if point is within
# main ellipsoid and count the number of points within the
# inner ellipsoid.
ninner = 0
for i in range(nsamples):
x = ell.sample()
assert ell.contains(x)
ninner += ell2.contains(x)
# check that the number of points in the inner ellipse is what
# we expect (practically guaranteed to be in range +/- 10 sigma!)
assert expect - 10.*sigma < ninner < expect + 10.*sigma
def test_ellipsoid_repr():
ell = nestle.Ellipsoid([0., 0.], [[1., 0.], [0., 1.]])
assert repr(ell) == "Ellipsoid(ctr=[0.0, 0.0])"
def test_bounding_ellipsoid():
"""Test that bounding ellipsoid contains the points"""
npoints = 100
print("\ntest_bounding_ellipsoid")
for n in range(1, NMAX+1):
ell_gen = random_ellipsoid(n) # random elipsoid
x = ell_gen.samples(npoints) # points within it
ell = nestle.bounding_ellipsoid(x)
for xi in x:
assert ell.contains(xi)
print("n={}: true_vol={} vol={}".format(n, ell_gen.vol, ell.vol))
def test_bounding_ellipsoid_robust():
"""Test that bounding ellipsoid still works when npoints < dim but
pointvol > 0."""
for n in range(1, NMAX+1):
ell_gen = random_ellipsoid(n)
for npoints in range(1, n):
x = ell_gen.samples(npoints)
# check that it works
ell = nestle.bounding_ellipsoid(x, pointvol=ell_gen.vol/npoints)
# check that volume is as expected
assert_allclose(ell.vol, ell_gen.vol)
# check that points are contained
for xi in x:
assert ell.contains(xi)
# -----------------------------------------------------------------------------
# Case test helpers
def integrate_on_grid(f, ranges, density=100):
"""Return log of integral"""
rs = []
for r in ranges:
step = (r[1] - r[0]) / density
rmin = r[0] + step / 2.
rmax = r[1] - step / 2.
rs.append(np.linspace(rmin, rmax, density))
logsum = -1.e300
for v in itertools.product(*rs):
logsum = np.logaddexp(logsum, f(np.array(v)))
# adjust for prior density: divide by density^n
logsum -= len(ranges) * np.log(density)
return logsum
def integrate_on_grid_refine(f, ranges):
"""Integrate on grid, tuning sampling density."""
density = 100
logsum_old = -np.inf
while True:
logsum = integrate_on_grid(f, ranges, density=density)
if abs(logsum - logsum_old) < 0.001:
return logsum
logsum_old = logsum
density *= 2
# -----------------------------------------------------------------------------
# Case Test 0: completely flat likelihood & prior
# This tests if we are normalizing the integral correctly and whether we get
# h = 0 as expected.
def run_flat(method):
logl = lambda x: 0.0
prior = lambda x: x
res = nestle.sample(logl, prior, 2, method=method,
npoints=4, rstate=RandomState(0))
assert_allclose(res.logz, 0.0, atol=1.e-10)
assert_allclose(res.h, 0.0, atol=1.e-10)
def test_flat_classic():
run_flat("classic")
def test_flat_single():
run_flat("single")
@pytest.mark.skipif("not nestle.HAVE_KMEANS")
def test_flat_multi():
run_flat("multi")
# -----------------------------------------------------------------------------
# Case Test 1: two gaussians centered at (1, 1) and (-1, -1) with sigma = 0.1
def run_two_gaussians(method):
sigma = 0.1
mu1 = np.ones(2)
mu2 = -np.ones(2)
sigma_inv = np.identity(2) / 0.1**2
def logl(x):
dx1 = x - mu1
dx2 = x - mu2
return np.logaddexp(-np.dot(dx1, np.dot(sigma_inv, dx1)) / 2.0,
-np.dot(dx2, np.dot(sigma_inv, dx2)) / 2.0)
# Flat prior, over [-5, 5] in both dimensions
def prior(x):
return 10.0 * x - 5.0
#(Approximate) analytic evidence for two identical Gaussian blobs,
# over a uniform prior [-5:5][-5:5] with density 1/100 in this domain:
analytic_logz = np.log(2.0 * 2.0*np.pi*sigma*sigma / 100.)
grid_logz = integrate_on_grid_refine(logl, [(-5., 5.), (-5., 5.)])
res = nestle.sample(logl, prior, 2, method=method,
npoints=100, rstate=RandomState(0))
print()
print("{}: logz = {:6.3f} +/- {:6.3f}"
.format(method, res.logz, res.logzerr))
print(" grid_logz = {0:8.5f}".format(grid_logz))
print(" analytic_logz = {0:8.5f}".format(analytic_logz))
assert abs(res.logz - grid_logz) < 3.0 * res.logzerr
assert abs(res.weights.sum() - 1.) < SQRTEPS
def test_two_gaussians_classic():
run_two_gaussians('classic')
def test_two_gaussians_single():
run_two_gaussians('single')
@pytest.mark.skipif("not nestle.HAVE_KMEANS")
def test_two_gaussians_multi():
run_two_gaussians('multi')
# -----------------------------------------------------------------------------
# Case Test 2: Eggbox
@pytest.mark.skipif("not nestle.HAVE_KMEANS")
def test_eggbox():
tmax = 5.0 * np.pi
constant = np.log(1.0 / tmax**2)
def loglike(x):
t = 2.0 * tmax * x - tmax
return (2.0 + np.cos(t[0]/2.0)*np.cos(t[1]/2.0))**5.0
def prior(x):
return x
res = nestle.sample(loglike, prior, 2, npoints=500, method='multi',
rstate=RandomState(0))
grid_logz = integrate_on_grid_refine(loglike, [(0., 1.), (0., 1.)])
print("\nEggbox")
print("multi : logz = {:6.3f} +/- {:6.3f}"
.format(res.logz, res.logzerr))
print(" grid_logz = {0:8.5f}".format(grid_logz))
assert abs(res.logz - grid_logz) < 3.0 * res.logzerr
assert abs(res.weights.sum() - 1.) < SQRTEPS
# -----------------------------------------------------------------------------
# test utilities
def test_mean_and_cov():
x = np.random.random((10, 3))
w = np.random.random((10,))
mean, cov = nestle.mean_and_cov(x, w)
# check individual elements
xd = x - np.average(x, weights=w, axis=0)
prefactor = w.sum() / (w.sum()**2 - (w**2).sum())
ans00 = prefactor * np.sum(w * xd[:, 0] * xd[:, 0])
assert_approx_equal(cov[0, 0], ans00)
ans01 = prefactor * np.sum(w * xd[:, 0] * xd[:, 1])
assert_approx_equal(cov[0, 1], ans01)
# If weights are all equal, covariance should come out to simple case
w = np.repeat(0.2, 10)
mean, cov = nestle.mean_and_cov(x, w)
assert_allclose(cov, np.cov(x, rowvar=0))
assert_allclose(mean, np.average(x, axis=0))
def test_resample_equal():
N = 1000
# N randomly weighted samples
x = np.arange(N).reshape((N, 1))
w = np.random.random((N,))
w /= w.sum()
new_x = nestle.resample_equal(x, w)
# Each original sample should appear in the final sample either
# floor(w * N) or ceil(w * N) times.
for i in range(N):
num = (new_x == x[i]).sum() # number of times x[i] appears in new_x
assert math.floor(w[i]*N) <= num <= math.ceil(w[i]*N)
def test_result():
# test repr
r = nestle.Result(a=1, b=2)
assert repr(r) in [' b: 2\n a: 1', ' a: 1\n b: 2']
# test attribute error
with pytest.raises(AttributeError):
r.c
# test printing empty result
r = nestle.Result()
assert repr(r) == 'Result()'
# test summary (needs specific keys):
r = nestle.Result(niter=100, ncall=100, samples=[1., 2., 3.],
logz=1., logzerr=0.1, h=0.1)
assert r.summary() == ('niter: 100\nncall: 100\nnsamples: 3\n'
'logz: 1.000 +/- 0.100\nh: 0.100')
def test_print_progress():
"""Check that print_progress don't error."""
nestle.print_progress({'it': 0, 'logz': 1.})