This repository has been archived by the owner on Sep 21, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathanonymize.py
149 lines (116 loc) · 4.77 KB
/
anonymize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from utils.types import AnonMethod
import os
import argparse
import numpy as np
import pandas as pd
from metrics import NCP, DM, CAVG
from algorithms import (
k_anonymize,
read_tree)
from datasets import get_dataset_params
from utils.data import read_raw, write_anon, numberize_categories
parser = argparse.ArgumentParser('K-Anonymize')
parser.add_argument('--method', type=str, default='mondrian',
help="K-Anonymity Method")
parser.add_argument('--k', type=int, default=2,
help="K-Anonymity or L-Diversity")
parser.add_argument('--dataset', type=str, default='adult',
help="Dataset to anonymize")
class Anonymizer:
def __init__(self, args):
self.method = args.method
assert self.method in ["mondrian", "topdown", "cluster", "mondrian_ldiv", "classic_mondrian", "datafly"]
self.k = args.k
self.data_name = args.dataset
self.csv_path = args.dataset+'.csv'
# Data path
self.path = os.path.join('data', args.dataset) # trailing /
# Dataset path
self.data_path = os.path.join(self.path, self.csv_path)
# Generalization hierarchies path
self.gen_path = os.path.join(
self.path,
'hierarchies') # trailing /
# folder for all results
res_folder = os.path.join(
'results',
args.dataset,
self.method)
# path for anonymized datasets
self.anon_folder = res_folder # trailing /
os.makedirs(self.anon_folder, exist_ok=True)
def anonymize(self):
data = pd.read_csv(self.data_path, delimiter=';')
ATT_NAMES = list(data.columns)
data_params = get_dataset_params(self.data_name)
QI_INDEX = data_params['qi_index']
IS_CAT2 = data_params['is_category']
QI_NAMES = list(np.array(ATT_NAMES)[QI_INDEX])
IS_CAT = [True] * len(QI_INDEX) # is all cat because all hierarchies are provided
SA_INDEX = [index for index in range(len(ATT_NAMES)) if index not in QI_INDEX]
SA_var = [ATT_NAMES[i] for i in SA_INDEX]
ATT_TREES = read_tree(
self.gen_path,
self.data_name,
ATT_NAMES,
QI_INDEX, IS_CAT)
raw_data, header = read_raw(
self.path,
self.data_name,
QI_INDEX, IS_CAT)
anon_params = {
"name" :self.method,
"att_trees" :ATT_TREES,
"value" :self.k,
"qi_index" :QI_INDEX,
"sa_index" :SA_INDEX
}
if self.method == AnonMethod.CLASSIC_MONDRIAN:
mapping_dict,raw_data = numberize_categories(raw_data, QI_INDEX, SA_INDEX, IS_CAT2)
anon_params.update({'mapping_dict': mapping_dict})
anon_params.update({'is_cat': IS_CAT2})
if self.method == AnonMethod.DATAFLY:
anon_params.update({
'qi_names': QI_NAMES,
'csv_path': self.data_path,
'data_name': self.data_name,
'dgh_folder': self.gen_path,
'res_folder': self.anon_folder})
anon_params.update({'data': raw_data})
print(f"Anonymize with {self.method}")
anon_data, runtime = k_anonymize(anon_params)
# Write anonymized table
if anon_data is not None:
nodes_count = write_anon(
self.anon_folder,
anon_data,
header,
self.k,
self.data_name)
if self.method == AnonMethod.CLASSIC_MONDRIAN:
ncp_score, runtime = runtime
else:
# Normalized Certainty Penalty
ncp = NCP(anon_data, QI_INDEX, ATT_TREES)
ncp_score = ncp.compute_score()
# Discernibility Metric
raw_dm = DM(raw_data, QI_INDEX, self.k)
raw_dm_score = raw_dm.compute_score()
anon_dm = DM(anon_data, QI_INDEX, self.k)
anon_dm_score = anon_dm.compute_score()
# Average Equivalence Class
raw_cavg = CAVG(raw_data, QI_INDEX, self.k)
raw_cavg_score = raw_cavg.compute_score()
anon_cavg = CAVG(anon_data, QI_INDEX, self.k)
anon_cavg_score = anon_cavg.compute_score()
print(f"NCP score (lower is better): {ncp_score:.3f}")
print(f"CAVG score (near 1 is better): BEFORE: {raw_cavg_score:.3f} || AFTER: {anon_cavg_score:.3f}")
print(f"DM score (lower is better): BEFORE: {raw_dm_score} || AFTER: {anon_dm_score}")
print(f"Time execution: {runtime:.3f}s")
return ncp_score, raw_cavg_score, anon_cavg_score, raw_dm_score, anon_dm_score
def main(args):
anonymizer = Anonymizer(args)
anonymizer.anonymize()
if __name__ == '__main__':
args = parser.parse_args()
main(args)