-
Notifications
You must be signed in to change notification settings - Fork 5
/
Snakefile
598 lines (499 loc) · 19.2 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import functools
import glob
from pathlib import Path
from snakemake.utils import min_version
import random
import re
##################################
## Helper functions
##################################
extensions = ["fa", "fasta", "fq", "fastq"]
def multiglob(patterns):
files = []
for pattern in patterns:
files.extend(glob.glob(pattern))
files = list(map(Path, files))
return files
def get_all_query_filepaths():
return multiglob(expand("input/*.{ext}", ext=extensions))
def get_all_query_filenames():
return sorted([file.with_suffix("").name for file in get_all_query_filepaths()])
def get_batches():
with open(config["batches"]) as fin:
return list(sorted(filter(len, map(str.strip, fin))))
def get_filename_for_all_queries():
return "___".join(get_all_query_filenames())
def get_index_metadata(wildcards, input):
batch = wildcards.batch
decompressed_indexes_sizes_filepath = input.decompressed_indexes_sizes
with open(decompressed_indexes_sizes_filepath) as decompressed_indexes_sizes_fh:
for line in decompressed_indexes_sizes_fh:
cobs_index, size_in_bytes, xz_decompress_RAM = line.strip().split()
batch_for_cobs_index = cobs_index.split("/")[-1].replace(
".cobs_classic.xz", ""
)
size_in_bytes = int(size_in_bytes)
xz_decompress_RAM = int(xz_decompress_RAM)
if batch == batch_for_cobs_index:
return size_in_bytes, xz_decompress_RAM
assert (
False
), f"Error getting uncompressed batch size for batch {batch}: batch not found"
def get_uncompressed_batch_size(wildcards, input):
return get_index_metadata(wildcards, input)[0]
def get_xz_decompress_RAM_in_MB(wildcards, input):
xz_decompression_RAM_usage_in_bytes = get_index_metadata(wildcards, input)[1]
xz_decompression_RAM_usage_in_MB = (
int(xz_decompression_RAM_usage_in_bytes / 1024 / 1024) + 1
)
return xz_decompression_RAM_usage_in_MB
def get_uncompressed_batch_size_in_MB(wildcards, input, ignore_RAM, streaming):
if ignore_RAM:
return 0
if streaming:
# then we are decompressing and running cobs at the same time
xz_decompression_RAM_usage_in_MB = get_xz_decompress_RAM_in_MB(wildcards, input)
else:
xz_decompression_RAM_usage_in_MB = 0
size_in_bytes = get_uncompressed_batch_size(wildcards, input)
size_in_MB = int(size_in_bytes / 1024 / 1024) + 1
return size_in_MB + xz_decompression_RAM_usage_in_MB
def get_max_number_of_COBS_threads_from_auto_string(auto_string):
cobs_threads = re.findall(r"auto\((\d+)\)", auto_string)
parsing_was_successful = len(cobs_threads) == 1
assert parsing_was_successful, "Error parsing parameter cobs_threads parameter"
cobs_threads = int(cobs_threads[0])
return cobs_threads
def get_number_of_COBS_threads(wildcards, input, predefined_cobs_threads, streaming):
user_defined_nb_of_threads = not predefined_cobs_threads.startswith("auto")
if user_defined_nb_of_threads:
return int(predefined_cobs_threads)
use_max_cores = predefined_cobs_threads == "auto"
if use_max_cores:
max_number_of_COBS_threads = workflow.cores
else:
max_number_of_COBS_threads = get_max_number_of_COBS_threads_from_auto_string(
predefined_cobs_threads
)
uncompressed_batch_size_in_MB = get_uncompressed_batch_size_in_MB(
wildcards, input, ignore_RAM=False, streaming=streaming
)
max_RAM_MB = int(config["max_ram_gb"]) * 1024
number_of_cores_to_use = round(
uncompressed_batch_size_in_MB / max_RAM_MB * max_number_of_COBS_threads
)
number_of_cores_to_use = max(number_of_cores_to_use, 1)
number_of_cores_to_use = min(number_of_cores_to_use, max_number_of_COBS_threads)
is_using_more_than_half_of_the_cores = (
number_of_cores_to_use > max_number_of_COBS_threads / 2
)
if is_using_more_than_half_of_the_cores:
# usually in this situation we run just one COBS jobs simultaneously. Better then to use all cores then
number_of_cores_to_use = max_number_of_COBS_threads
return number_of_cores_to_use
def get_index_load_mode():
allowed_index_load_modes = ["mem-stream", "mem-disk", "mmap-disk"]
index_load_mode = config["index_load_mode"]
assert (
index_load_mode in allowed_index_load_modes
), f"index_load_mode must be one of {allowed_index_load_modes}"
return index_load_mode
##################################
## Initialization
##################################
configfile: "config.yaml"
min_version("6.2.0")
shell.prefix("set -euo pipefail")
batches = get_batches()
print(f"Batches: {batches}")
qfiles = get_all_query_filepaths()
print(f"Query files: {list(map(str, qfiles))}")
assemblies_dir = Path(f"{config['download_dir']}/asms")
cobs_dir = Path(f"{config['download_dir']}/cobs")
decompression_dir = Path(
config.get("decompression_dir", "intermediate/02_cobs_decompressed")
)
keep_cobs_indexes = config["keep_cobs_indexes"]
predefined_cobs_threads = str(config["cobs_threads"])
ignore_RAM = False
load_complete = False
streaming = False
cobs_is_an_IO_heavy_job = False
index_load_mode = get_index_load_mode()
if index_load_mode == "mem-stream":
# this parameter is ignored because we never decompress indexes to disk with this load mode
keep_cobs_indexes = False
load_complete = True
streaming = True
elif index_load_mode == "mem-disk":
load_complete = True
elif index_load_mode == "mmap-disk":
# we ignore RAM usage because the OS is responsible for controlling RAM usage in this case
ignore_RAM = True
# we set cobs as an IO-heavy job because during its execution it might access the disk several times
# due to mmap
cobs_is_an_IO_heavy_job = True
wildcard_constraints:
batch=".+__\d\d",
if keep_cobs_indexes:
ruleorder: decompress_cobs > run_cobs > decompress_and_run_cobs
else:
ruleorder: decompress_and_run_cobs > decompress_cobs > run_cobs
##################################
## Download params
##################################
def cobs_url_fct(wildcards):
x = wildcards.batch
if x >= "eubacterium":
return f"https://zenodo.org/record/6849657/files/{x}.cobs_classic.xz"
else:
return f"https://zenodo.org/record/6845083/files/{x}.cobs_classic.xz"
def asms_url_fct(wildcards):
asm_zenodo = 4602622
asm_url = f"https://zenodo.org/record/{asm_zenodo}/files/{wildcards.batch}.tar.xz"
return asm_url
def get_sleep_amount(attempt):
return int(config["download_retry_wait"]) * (attempt - 1)
##################################
## Top-level rules
##################################
rule all:
"""Run all
"""
input:
f"output/{get_filename_for_all_queries()}.sam_summary.gz",
f"output/{get_filename_for_all_queries()}.sam_summary.stats",
rule download:
"""Download assemblies and COBS indexes.
"""
input:
[f"{assemblies_dir}/{x}.tar.xz" for x in batches],
[f"{cobs_dir}/{x}.cobs_classic.xz" for x in batches],
rule download_asms_batches:
"""Download assemblies.
"""
input:
[f"{assemblies_dir}/{x}.tar.xz" for x in batches],
rule download_cobs_batches:
"""Download COBS indexes.
"""
input:
[f"{cobs_dir}/{x}.cobs_classic.xz" for x in batches],
rule match:
"""Match reads to the COBS indexes.
"""
input:
f"intermediate/04_filter/{get_filename_for_all_queries()}.fa",
rule map:
"""Map reads to the assemblies.
"""
input:
f"output/{get_filename_for_all_queries()}.sam_summary.gz",
f"output/{get_filename_for_all_queries()}.sam_summary.stats",
##################################
## Download rules
##################################
rule download_asm_batch:
"""Download compressed assemblies
"""
output:
xz=f"{assemblies_dir}/{{batch}}.tar.xz",
threads: 1
resources:
max_download_threads=1,
mem_mb=200,
# note: sleep_amount has to be defined as a resource
# note: I tried a hack to route it to params, but it did not work, see https://github.com/snakemake/snakemake/issues/499
sleep_amount=lambda wildcards, attempt: get_sleep_amount(attempt),
params:
url=asms_url_fct,
shell:
"""
scripts/download.sh {params.url} {output.xz} {resources.sleep_amount}
"""
rule download_cobs_batch:
"""Download compressed cobs indexes
"""
output:
xz=f"{cobs_dir}/{{batch}}.cobs_classic.xz",
threads: 1
resources:
max_download_threads=1,
mem_mb=200,
sleep_amount=lambda wildcards, attempt: get_sleep_amount(attempt),
params:
url=cobs_url_fct,
shell:
"""
scripts/download.sh {params.url} {output.xz} {resources.sleep_amount}
"""
##################################
## Processing rules
##################################
def get_query_file(wildcards):
query_file = multiglob(expand(f"input/{wildcards.qfile}.{{ext}}", ext=extensions))
assert len(query_file) == 1
return query_file[0]
rule fix_query:
"""Fix query to expected COBS format: single line fastas composed of ACGT bases only
"""
output:
fixed_query="intermediate/00_queries_preprocessed/{qfile}.fa",
input:
original_query=get_query_file,
threads: 1
resources:
mem_mb=200,
conda:
"envs/seqtk.yaml"
params:
base_to_replace="A",
shell:
"""
seqtk seq -A -U -C {input.original_query} \\
| awk '{{if(NR%2==1){{print $0;}}else{{gsub(/[^ACGT]/, \"{params.base_to_replace}\"); print;}}}}' \\
> {output.fixed_query}
"""
rule concatenate_queries:
"""Concatenate all queries into a single file, so we just need to run COBS/minimap2 just once per batch
"""
output:
concatenated_query=f"intermediate/01_queries_merged/{get_filename_for_all_queries()}.fa",
input:
all_queries=expand(
"intermediate/00_queries_preprocessed/{qfile}.fa",
qfile=get_all_query_filenames(),
),
threads: 1
resources:
mem_mb=200,
shell:
"""
cat {input} > {output}
"""
# note: snakefmt makes incorrect breaks and spacing for threads; to keep the lines
# short to prevent this behaviour, we use the following function
partial_cobs_threads = functools.partial(
get_number_of_COBS_threads,
predefined_cobs_threads=predefined_cobs_threads,
streaming=streaming,
)
rule decompress_cobs:
"""Decompress cobs indexes
Note threads: The same number as of COBS threads to ensure that COBS is executed immediately after decompression
"""
output:
cobs_index=f"{decompression_dir}/{{batch}}.cobs_classic",
input:
xz=f"{cobs_dir}/{{batch}}.cobs_classic.xz",
decompressed_indexes_sizes="data/decompressed_indexes_sizes.txt",
resources:
max_io_heavy_threads=1,
mem_mb=lambda wildcards, input: int(
get_xz_decompress_RAM_in_MB(wildcards, input) * 1.25
),
params:
cobs_index_tmp=f"{decompression_dir}/{{batch}}.cobs_classic.tmp",
threads: partial_cobs_threads
shell:
"""
./scripts/benchmark.py --log logs/benchmarks/decompress_cobs/{wildcards.batch}.txt \\
'xzcat --no-sparse --ignore-check "{input.xz}" > "{params.cobs_index_tmp}" \\
&& mv "{params.cobs_index_tmp}" "{output.cobs_index}"'
"""
rule run_cobs:
"""Cobs matching
"""
output:
match="intermediate/03_match/{batch}____{qfile}.gz",
input:
cobs_index=f"{decompression_dir}/{{batch}}.cobs_classic",
fa="intermediate/01_queries_merged/{qfile}.fa",
decompressed_indexes_sizes="data/decompressed_indexes_sizes.txt",
resources:
max_io_heavy_threads=int(cobs_is_an_IO_heavy_job),
max_ram_mb=lambda wildcards, input: get_uncompressed_batch_size_in_MB(
wildcards, input, ignore_RAM, streaming
),
mem_mb=lambda wildcards, input: int(
get_uncompressed_batch_size_in_MB(wildcards, input, ignore_RAM, streaming)
+ 1024
),
threads: partial_cobs_threads
params:
kmer_thres=config["cobs_kmer_thres"],
load_complete="--load-complete" if load_complete else "",
nb_best_hits=config["nb_best_hits"],
priority: 999
conda:
"envs/cobs.yaml"
shell:
"""
./scripts/benchmark.py --log logs/benchmarks/run_cobs/{wildcards.batch}____{wildcards.qfile}.txt \\
'cobs query \\
{params.load_complete} \\
-t {params.kmer_thres} \\
-T {threads} \\
-i {input.cobs_index} \\
-f {input.fa} \\
| ./scripts/postprocess_cobs.py -n {params.nb_best_hits} \\
| gzip --fast \\
> {output.match}'
"""
rule decompress_and_run_cobs:
"""Decompress Cobs index and run Cobs matching
"""
output:
match="intermediate/03_match/{batch}____{qfile}.gz",
input:
compressed_cobs_index=f"{cobs_dir}/{{batch}}.cobs_classic.xz",
fa="intermediate/01_queries_merged/{qfile}.fa",
decompressed_indexes_sizes="data/decompressed_indexes_sizes.txt",
resources:
max_io_heavy_threads=int(cobs_is_an_IO_heavy_job),
max_ram_mb=lambda wildcards, input: get_uncompressed_batch_size_in_MB(
wildcards, input, ignore_RAM, streaming
),
mem_mb=lambda wildcards, input: int(
get_uncompressed_batch_size_in_MB(wildcards, input, ignore_RAM, streaming)
+ 1024
),
threads: partial_cobs_threads
params:
kmer_thres=config["cobs_kmer_thres"],
decompression_dir=decompression_dir,
cobs_index=lambda wildcards: f"{decompression_dir}/{wildcards.batch}.cobs_classic",
cobs_index_tmp=lambda wildcards: f"{decompression_dir}/{wildcards.batch}.cobs_classic.tmp",
load_complete="--load-complete" if load_complete else "",
nb_best_hits=config["nb_best_hits"],
uncompressed_batch_size=get_uncompressed_batch_size,
streaming=int(streaming),
conda:
"envs/cobs.yaml"
shell:
"""
if [ {params.streaming} = 1 ]
then
./scripts/benchmark.py --log logs/benchmarks/run_cobs/{wildcards.batch}____{wildcards.qfile}.txt \\
'./scripts/run_cobs_streaming.sh {params.kmer_thres} {threads} "{input.compressed_cobs_index}" {params.uncompressed_batch_size} "{input.fa}" \\
| ./scripts/postprocess_cobs.py -n {params.nb_best_hits} \\
| gzip --fast\\
> {output.match}'
else
mkdir -p {params.decompression_dir}
./scripts/benchmark.py --log logs/benchmarks/decompress_cobs/{wildcards.batch}____{wildcards.qfile}.txt \\
'xzcat "{input.compressed_cobs_index}" > "{params.cobs_index_tmp}" \\
&& mv "{params.cobs_index_tmp}" "{params.cobs_index}"'
./scripts/benchmark.py --log logs/benchmarks/run_cobs/{wildcards.batch}____{wildcards.qfile}.txt \\
'cobs query \\
{params.load_complete} \\
-t {params.kmer_thres} \\
-T {threads} \\
-i "{params.cobs_index}" \\
-f "{input.fa}" \\
| ./scripts/postprocess_cobs.py -n {params.nb_best_hits} \\
| gzip --fast\\
> {output.match}'
rm -v "{params.cobs_index}"
fi
"""
rule translate_matches:
"""Translate cobs matches.
Output:
ref - read - matches
"""
output:
fa="intermediate/04_filter/{qfile}.fa",
input:
fa="intermediate/01_queries_merged/{qfile}.fa",
all_matches=[
f"intermediate/03_match/{batch}____{{qfile}}.gz" for batch in batches
],
conda:
"envs/minimap2.yaml"
threads: 1
resources:
mem_mb=lambda wildcards, attempt: 4000 * 2 ** (attempt), # 4GB, 8GB, 16GB, 32GB...
log:
"logs/04_filter/{qfile}.log",
params:
nb_best_hits=config["nb_best_hits"],
shell:
"""
./scripts/benchmark.py --log logs/benchmarks/translate_matches/translate_matches___{wildcards.qfile}.txt \\
'./scripts/filter_queries.py \\
-n {params.nb_best_hits} \\
-q {input.fa} \\
{input.all_matches} \\
> {output.fa} 2>{log}'
"""
rule batch_align_minimap2:
output:
sam="intermediate/05_map/{batch}____{qfile}.sam.gz",
input:
qfa="intermediate/04_filter/{qfile}.fa",
asm=f"{assemblies_dir}/{{batch}}.tar.xz",
log:
log="logs/05_map/{batch}____{qfile}.log",
params:
minimap_preset=config["minimap_preset"],
minimap_extra_params=config["minimap_extra_params"],
pipe="--pipe" if config["prefer_pipe"] else "",
refs_tmp="intermediate/05_map/{batch}____{qfile}.refs.tmp",
conda:
"envs/minimap2.yaml"
threads: config["minimap_threads"]
resources:
mem_mb=lambda wildcards, attempt: 1000 * 2 ** (attempt), # 1GB, 2GB, 4GB, 8GB...
shell:
"""
xzcat data/661k_batches.txt.xz \\
| grep {wildcards.batch} \\
| cut -f2 \\
> {params.refs_tmp}
./scripts/benchmark.py --log logs/benchmarks/batch_align_minimap2/{wildcards.batch}____{wildcards.qfile}.txt \\
'./scripts/batch_align.py \\
--minimap-preset {params.minimap_preset} \\
--threads {threads} \\
--extra-params=\"{params.minimap_extra_params}\" \\
--accessions {params.refs_tmp} \\
{params.pipe} \\
{input.asm} \\
{input.qfa} \\
2>{log} \\
| {{ grep -Ev "^@" || true; }} \\
| gzip --fast\\
> {output.sam}'
rm -f {params.refs_tmp}
"""
rule aggregate_sams:
output:
pseudosam="output/{qfile}.sam_summary.gz",
input:
sam=[f"intermediate/05_map/{batch}____{{qfile}}.sam.gz" for batch in batches],
threads: 1
resources:
mem_mb=lambda wildcards, attempt: 1000 * 2 ** (attempt), # 1GB, 2GB, 4GB, 8GB...
shell:
"""
./scripts/benchmark.py --log logs/benchmarks/aggregate_sams/aggregate_sams___{wildcards.qfile}.txt \\
'./scripts/aggregate_sams.sh {input.sam} \\
> {output.pseudosam}'
"""
rule final_stats:
output:
stats="output/{qfile}.sam_summary.stats",
input:
pseudosam="output/{qfile}.sam_summary.gz",
concatenated_query=f"intermediate/01_queries_merged/{get_filename_for_all_queries()}.fa",
conda:
"envs/minimap2.yaml"
threads: 1
resources:
mem_mb=lambda wildcards, attempt: 1000 * 2 ** (attempt), # 1GB, 2GB, 4GB, 8GB...
shell:
"""
./scripts/benchmark.py --log logs/benchmarks/aggregate_sams/final_stats___{wildcards.qfile}.txt \\
'./scripts/final_stats.py {input.concatenated_query} {input.pseudosam} \\
> {output.stats}'
"""