-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Show counts of intuition misses #7
Comments
Are you suggesting a kind of performance report through a game like sanderland/katrain#388 ? Unfortunately, this repository is currently in a "maintenance phase", and we are not focusing on adding new features in principle. In my impression, implementing this would require a certain amount of effort, and its practical usefulness isn't entirely clear. For example, the policy of the best move can be less than 0.7 after a long search. Do we count this as a "bad" move? What if all the policies are less than 0.1? The threshold 0.1 might be too large since the policy of "komoku" as the first move is only 0.026. Anyway, the following tasks would be necessary for this feature:
I'm afraid that this feature might not be very convenient without an additional functionality to jump to the corresponding moves, which would involve extra work. |
As a quick experiment, I implemented a slightly modified version on lizgoban lowpolicy_231118a branch because it is much easier to me. Gray squares are drawn on stones if "policy < 0.01" (thin) or "max_policy > 0.7 && policy < 0.1" (thick). The former is somewhat distracting to me but the latter is interesting. I'll try it for a while to test its usefulness. |
When we use yzy version With the emergence of too many bestmove+high policies, the accuracy in the yzy version will be particularly affected by the actual gameplay. Some simple long formulas will increase the degree of agreement. |
I agree that the concept of "overlooked high-policy moves" is an interesting focus. I'm currently testing it on lizgoban to get a feel for it. So far, it seems to give learners some hints about priority among various mistakes in a game. But its implementation on lizzie is not a very light task for me and I cannot make a promise on the development, unfortunately. I haven't used lizzie personally for a long time... Also, I have some concerns:
|
I think showing counts and percentages is enough Maybe you can add 2 titles: Basic skill matching rate 基本功吻合率 serious error rate 嚴重失誤率 |
wording idea: "Intuition Misses 2/5 40% (minor 111/250 44%)" |
NICE ! When will the source code be available? |
Experimental implementation. Untested at all! https://github.com/kaorahi/lizzie/tree/kaorahi7_policymiss To display the counts of intuition misses, edit your config.txt like this. Insert several lines into the existing "ui" section:
Thresholds (%) are used as follows.
Please don't have high expectations. Lizzie is not my main project, and I actually won't be using it personally. |
It worked. |
If I want to start statistics after move 6, how should I modify the source code? |
c768458 with config.txt:
If you want to help with the development, I would be happy to hear what you think after you test it for a month or so.
|
String[] msgs = Lizzie.frame.intuitionMissMessages();
} private static String getGoRating(double elo) { |
I think the current statistics are very useful, but it may be helpful to evaluate the level if we can have the values of the three largest score losses of Black and White. |
Are you asking me to import your code into this repository? If that's the case, I hesitate because I'm uncertain about the feasibility of your rank estimator, and I'm generally not planning to add new features aggressively here. Rank estimation does not seem easy. KaTrain once included a rank estimation feature in v1.3.1, which was removed in v1.5 with the note: "The rank estimator has been put away, as it was causing more confusion than anything ..." |
Thank you very much for your previous help. Maybe someone with better go level can find a way to find a reasonable algorithm? I am a Hong Kong amateur 5d. |
Can you add a mini Hawk Eye with features different from the YZY version?
I hope you can provide some source code references.
The first point is to only calculate the matching when the AI's recommended move policy is greater than 0.7. The purpose is to see the matching in situations where the AI's recommendation is very certain.
The second point is that the calculation condition for global matching is that as long as a player's move matches the AI's policy with a probability of 0.1% or more, it is considered a match. This way, beginners can better understand if their moves align with the AI's recommendations.
Please display this information directly on the main screen like this
.
The text was updated successfully, but these errors were encountered: