-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdataset.py
332 lines (260 loc) · 10.1 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import errno
import os
import sys
from collections import defaultdict
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
from torchvision.datasets.cifar import CIFAR10, CIFAR100
from torchvision.datasets.folder import pil_loader, make_dataset, IMG_EXTENSIONS, ImageFolder
from torchvision.transforms import transforms
class Caltech101(Dataset):
link = 'http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz'
filename = '101_ObjectCategories.tar.gz'
foldername = '101_ObjectCategories'
def _find_classes(self, dir):
"""
Finds the class folders in a dataset.
Args:
dir (string): Root directory path.
Returns:
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.
Ensures:
No class is a subdirectory of another.
"""
if sys.version_info >= (3, 5):
# Faster and available in Python 3.5 and above
classes = [d.name for d in os.scandir(dir) if d.is_dir()]
else:
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def __init__(self, root, train=True, transform=None, download=True):
self.root = root
root = os.path.join(root, self.foldername)
if download:
self.download()
classes, class_to_idx = self._find_classes(root)
samples = make_dataset(root, class_to_idx, IMG_EXTENSIONS)
datapaths = defaultdict(list)
for path, target in samples:
datapaths[target].append(path)
for target in datapaths.keys():
if train:
datapaths[target] = datapaths[target][:int(0.8 * len(datapaths[target]))]
else:
datapaths[target] = datapaths[target][int(0.8 * len(datapaths[target])):]
newdatapaths = []
labels = []
for target in datapaths.keys():
for path in datapaths[target]:
newdatapaths.append(path)
labels.append(target)
self.train = train
self.transform = transform
self.labels = labels
self.datapaths = newdatapaths
self.cache = {}
def __getitem__(self, index):
target = self.labels[index]
if index in self.cache:
img = self.cache[index]
else:
path = self.datapaths[index]
img = pil_loader(path)
self.cache[index] = img
if self.transform is not None:
img = self.transform(img)
return img, target
def download(self):
import tarfile
if os.path.exists(os.path.join(self.root, self.filename)):
print('Files already downloaded and verified')
return
self.download_url(self.link)
# extract file
cwd = os.getcwd()
mode = 'r:gz' if self.filename.endswith('.gz') else 'r'
tar = tarfile.open(os.path.join(self.root, self.filename), mode)
os.chdir(self.root)
tar.extractall()
tar.close()
os.chdir(cwd)
def download_url(self, link):
from six.moves import urllib
root = os.path.expanduser(self.root)
fpath = os.path.join(root, self.filename)
try:
os.makedirs(root)
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
# downloads file
try:
print('Downloading ' + link + ' to ' + fpath)
urllib.request.urlretrieve(link, fpath)
except:
if link[:5] == 'https':
url = link.replace('https:', 'http:')
print('Failed download. Trying https -> http instead.'
' Downloading ' + url + ' to ' + fpath)
urllib.request.urlretrieve(url, fpath)
def __len__(self):
return len(self.datapaths)
class Caltech256(Caltech101):
link = 'http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar'
filename = '256_ObjectCategories.tar'
foldername = '256_ObjectCategories'
class WMDataset(Dataset):
def __init__(self, root, labelpath, transform):
self.root = root
self.datapaths = [os.path.join(self.root, fn) for fn in os.listdir(self.root)]
self.labelpath = labelpath
self.labels = np.loadtxt(self.labelpath)
self.transform = transform
self.cache = {}
def __getitem__(self, index):
target = self.labels[index]
if index in self.cache:
img = self.cache[index]
else:
path = self.datapaths[index]
img = pil_loader(path)
img = self.transform(img) # transform is fixed CenterCrop + ToTensor
self.cache[index] = img
return img, int(target)
def __len__(self):
return len(self.datapaths)
def prepare_wm(datapath='data/trigger_set/pics', shuffle=True, crop=32):
triggerroot = datapath
labelpath = 'data/trigger_set/labels-cifar.txt'
if not os.path.exists(labelpath):
raise FileNotFoundError('Please download trigger set data from https://github.com/adiyoss/WatermarkNN. '
'We are using similar folder structure, you can place downloaded dataset in '
'"data/trigger_set"')
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
transform_list = [
transforms.CenterCrop(crop),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]
wm_transform = transforms.Compose(transform_list)
dataset = WMDataset(triggerroot, labelpath, wm_transform)
loader = DataLoader(dataset,
batch_size=2,
shuffle=shuffle,
drop_last=True)
return loader
def prepare_imagenet(args):
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
##### train transform #####
transform_list = [
# transforms.RandomCrop(224, padding=4),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]
train_transforms = transforms.Compose(transform_list)
##### test transform #####
transform_list = [
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]
test_transforms = transforms.Compose(transform_list)
root = 'data/ILSVRC2012'
if os.path.exists(root + '/cache.pth'):
print('Loading from cache')
train_dataset, test_dataset = torch.load(root + '/cache.pth')
else:
train_dataset = ImageFolder(root + '/train',
transform=train_transforms)
test_dataset = ImageFolder(root + '/val',
transform=test_transforms)
print('Saving to cache')
torch.save((train_dataset, test_dataset), root + '/cache.pth')
train_loader = DataLoader(train_dataset,
batch_size=args['batch_size'],
shuffle=True,
num_workers=32,
drop_last=True)
test_loader = DataLoader(test_dataset,
batch_size=args['batch_size'] * 2,
shuffle=False,
num_workers=32)
return train_loader, test_loader
def prepare_dataset(args):
print('Loading dataset')
is_tl = args['transfer_learning']
tl_ds = args['tl_dataset']
ds = args['dataset'] if not is_tl else tl_ds
is_imagenet = 'imagenet1000' in args['dataset']
if (is_imagenet and (not is_tl)) or (is_tl and 'imagenet1000' in tl_ds):
return prepare_imagenet(args)
##### shortcut ######
is_cifar = 'cifar' in ds
root = f'data/{ds}'
print('Loading dataset: ' + ds)
DATASET = {
'cifar10': CIFAR10,
'cifar100': CIFAR100,
'caltech-101': Caltech101,
'caltech-256': Caltech256
}[ds]
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
##### train transform #####
imgsize = 224 if is_imagenet else 32
if (not is_cifar) or imgsize == 224:
transform_list = [
transforms.Resize(imgsize),
transforms.CenterCrop(imgsize)
]
else:
transform_list = []
if not is_tl:
transform_list.append(
transforms.RandomCrop(imgsize, padding=int((4 / 32) * imgsize))
)
transform_list.extend([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
train_transforms = transforms.Compose(transform_list)
##### test transform #####
if (not is_cifar) or imgsize == 224:
transform_list = [
transforms.Resize(imgsize),
transforms.CenterCrop(imgsize)
]
else:
transform_list = []
transform_list.extend([
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
test_transforms = transforms.Compose(transform_list)
##### dataset and loader #####
train_dataset = DATASET(root,
train=True,
transform=train_transforms,
download=True)
test_dataset = DATASET(root,
train=False,
transform=test_transforms)
train_loader = DataLoader(train_dataset,
batch_size=args['batch_size'],
shuffle=True,
num_workers=8,
drop_last=True)
test_loader = DataLoader(test_dataset,
batch_size=args['batch_size'] * 2,
shuffle=args.get('shuffle_val', False),
num_workers=8)
print(f'Dataset: {len(train_dataset)}/{len(test_dataset)}')
return train_loader, test_loader