-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathplanar_flow.py
301 lines (238 loc) · 12 KB
/
planar_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
"""
Variational Inference with Normalizing Flows
arXiv:1505.05770v6
"""
import torch
import torch.nn as nn
import torch.distributions as D
import math
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import os
import argparse
parser = argparse.ArgumentParser()
# action
parser.add_argument('--train', action='store_true', help='Train a flow.')
parser.add_argument('--evaluate', action='store_true', help='Evaluate a flow.')
parser.add_argument('--plot', action='store_true', help='Plot a flow and target density.')
parser.add_argument('--restore_file', type=str, help='Path to model to restore.')
parser.add_argument('--output_dir', default='.', help='Path to output folder.')
parser.add_argument('--no_cuda', action='store_true', help='Do not use cuda.')
# target potential
parser.add_argument('--target_potential', choices=['u_z0', 'u_z5', 'u_z1', 'u_z2', 'u_z3', 'u_z4'], help='Which potential function to approximate.')
# flow params
parser.add_argument('--base_sigma', type=float, default=4, help='Std of the base isotropic 0-mean Gaussian distribution.')
parser.add_argument('--learn_base', default=False, action='store_true', help='Whether to learn a mu-sigma affine transform of the base distribution.')
parser.add_argument('--flow_length', type=int, default=2, help='Length of the flow.')
# training params
parser.add_argument('--init_sigma', type=float, default=1, help='Initialization std for the trainable flow parameters.')
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--start_step', type=int, default=0, help='Starting step (if resuming training will be overwrite from filename).')
parser.add_argument('--n_steps', type=int, default=1000000, help='Optimization steps.')
parser.add_argument('--lr', type=float, default=1e-5, help='Learning rate.')
parser.add_argument('--weight_decay', type=float, default=1e-3, help='Weight decay.')
parser.add_argument('--beta', type=float, default=1, help='Multiplier for the target potential loss.')
parser.add_argument('--seed', type=int, default=2, help='Random seed.')
# --------------------
# Flow
# --------------------
class PlanarTransform(nn.Module):
def __init__(self, init_sigma=0.01):
super().__init__()
self.u = nn.Parameter(torch.randn(1, 2).normal_(0, init_sigma))
self.w = nn.Parameter(torch.randn(1, 2).normal_(0, init_sigma))
self.b = nn.Parameter(torch.randn(1).fill_(0))
def forward(self, x, normalize_u=True):
# allow for a single forward pass over all the transforms in the flows with a Sequential container
if isinstance(x, tuple):
z, sum_log_abs_det_jacobians = x
else:
z, sum_log_abs_det_jacobians = x, 0
# normalize u s.t. w @ u >= -1; sufficient condition for invertibility
u_hat = self.u
if normalize_u:
wtu = (self.w @ self.u.t()).squeeze()
m_wtu = - 1 + torch.log1p(wtu.exp())
u_hat = self.u + (m_wtu - wtu) * self.w / (self.w @ self.w.t())
# compute transform
f_z = z + u_hat * torch.tanh(z @ self.w.t() + self.b)
# compute log_abs_det_jacobian
psi = (1 - torch.tanh(z @ self.w.t() + self.b)**2) @ self.w
det = 1 + psi @ u_hat.t()
log_abs_det_jacobian = torch.log(torch.abs(det) + 1e-6).squeeze()
sum_log_abs_det_jacobians = sum_log_abs_det_jacobians + log_abs_det_jacobian
return f_z, sum_log_abs_det_jacobians
class AffineTransform(nn.Module):
def __init__(self, learnable=False):
super().__init__()
self.mu = nn.Parameter(torch.zeros(2)).requires_grad_(learnable)
self.logsigma = nn.Parameter(torch.zeros(2)).requires_grad_(learnable)
def forward(self, x):
z = self.mu + self.logsigma.exp() * x
sum_log_abs_det_jacobians = self.logsigma.sum()
return z, sum_log_abs_det_jacobians
# --------------------
# Test energy functions -- NF paper table 1
# --------------------
w1 = lambda z: torch.sin(2 * math.pi * z[:,0] / 4)
w2 = lambda z: 3 * torch.exp(-0.5 * ((z[:,0] - 1)/0.6)**2)
w3 = lambda z: 3 * torch.sigmoid((z[:,0] - 1) / 0.3)
u_z1 = lambda z: 0.5 * ((torch.norm(z, p=2, dim=1) - 2) / 0.4)**2 - \
torch.log(torch.exp(-0.5*((z[:,0] - 2) / 0.6)**2) + torch.exp(-0.5*((z[:,0] + 2) / 0.6)**2) + 1e-10)
u_z2 = lambda z: 0.5 * ((z[:,1] - w1(z)) / 0.4)**2
u_z3 = lambda z: - torch.log(torch.exp(-0.5*((z[:,1] - w1(z))/0.35)**2) + torch.exp(-0.5*((z[:,1] - w1(z) + w2(z))/0.35)**2) + 1e-10)
u_z4 = lambda z: - torch.log(torch.exp(-0.5*((z[:,1] - w1(z))/0.4)**2) + torch.exp(-0.5*((z[:,1] - w1(z) + w3(z))/0.35)**2) + 1e-10)
# --------------------
# Training
# --------------------
def optimize_flow(base_dist, flow, target_energy_potential, optimizer, args):
# anneal rate for free energy
temp = lambda i: min(1, 0.01 + i/10000)
for i in range(args.start_step, args.n_steps):
# sample base dist
z = base_dist.sample((args.batch_size, )).to(args.device)
# pass through flow:
# 1. compute expected log_prob of data under base dist -- nothing tied to parameters here so irrelevant to grads
base_log_prob = base_dist.log_prob(z)
# 2. compute sum of log_abs_det_jacobian through the flow
zk, sum_log_abs_det_jacobians = flow(z)
# 3. compute expected log_prob of z_k the target_energy potential
p_log_prob = - temp(i) * target_energy_potential(zk) # p = exp(-potential) ==> p_log_prob = - potential
loss = base_log_prob - sum_log_abs_det_jacobians - args.beta * p_log_prob
loss = loss.mean(0)
# compute loss and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % 10000 == 0:
# display loss
log_qk = base_dist.log_prob(z) - sum_log_abs_det_jacobians
print('{}: step {:5d} / {}; loss {:.3f}; base_log_prob {:.3f}, sum log dets {:.3f}, p_log_prob {:.3f}, max base = {:.3f}; max qk = {:.3f} \
zk_mean {}, zk_sigma {}; base_mu {}, base_log_sigma {}'.format(
args.target_potential, i, args.n_steps, loss.item(), base_log_prob.mean(0).item(), sum_log_abs_det_jacobians.mean(0).item(),
p_log_prob.mean(0).item(), base_log_prob.exp().max().item(), log_qk.exp().max().item(),
zk.mean(0).cpu().data.numpy(), zk.var(0).sqrt().cpu().data.numpy(),
base_dist.loc.cpu().data.numpy() if not args.learn_base else flow[0].mu.cpu().data.numpy(),
base_dist.covariance_matrix.cpu().diag().data.numpy() if not args.learn_base else flow[0].logsigma.cpu().data.numpy()))
# save model
torch.save({'step': i,
'flow_state': flow.state_dict(),
'optimizer_state': optimizer.state_dict()},
os.path.join(args.output_dir, 'model_state_flow_length_{}.pt'.format(args.flow_length)))
# plot and save results
with torch.no_grad():
plot_flow(base_dist, flow, os.path.join(args.output_dir, 'approximating_flow_step{}.png'.format(i)), args)
# --------------------
# Plotting
# --------------------
def plot_flow(base_dist, flow, filename, args):
n = 200
lim = 4
fig, axs = plt.subplots(2, 2, subplot_kw={'aspect': 'equal'})
# plot target density we're trying to approx
plot_target_density(u_z, axs[0,0], lim, n)
# plot posterior approx density
plot_flow_density(base_dist, flow, axs[0,1], lim, n)
# plot flow-transformed base dist sample and histogram
z = base_dist.sample((10000,))
zk, _ = flow(z)
zk = zk.cpu().data.numpy()
axs[1,0].scatter(zk[:,0], zk[:,1], s=10, alpha=0.4)
axs[1,1].hist2d(zk[:,0], zk[:,1], bins=lim*50, cmap=plt.cm.jet)
for ax in plt.gcf().axes:
ax.get_xaxis().set_visible(True)
ax.get_yaxis().set_visible(True)
ax.invert_yaxis()
plt.tight_layout()
plt.savefig(filename)
plt.close()
def plot_target_density(u_z, ax, range_lim=4, n=200, output_dir=None):
x = torch.linspace(-range_lim, range_lim, n)
xx, yy = torch.meshgrid((x, x))
zz = torch.stack((xx.flatten(), yy.flatten()), dim=-1).squeeze().to(args.device)
ax.pcolormesh(xx, yy, torch.exp(-u_z(zz)).view(n,n).data, cmap=plt.cm.jet)
for ax in plt.gcf().axes:
ax.set_xlim(-range_lim, range_lim)
ax.set_ylim(-range_lim, range_lim)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.invert_yaxis()
if output_dir:
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'target_potential_density.png'))
plt.close()
def plot_flow_density(base_dist, flow, ax, range_lim=4, n=200, output_dir=None):
x = torch.linspace(-range_lim, range_lim, n)
xx, yy = torch.meshgrid((x, x))
zz = torch.stack((xx.flatten(), yy.flatten()), dim=-1).squeeze().to(args.device)
# plot posterior approx density
zzk, sum_log_abs_det_jacobians = flow(zz)
log_q0 = base_dist.log_prob(zz)
log_qk = log_q0 - sum_log_abs_det_jacobians
qk = log_qk.exp().cpu()
zzk = zzk.cpu()
ax.pcolormesh(zzk[:,0].view(n,n).data, zzk[:,1].view(n,n).data, qk.view(n,n).data, cmap=plt.cm.jet)
ax.set_facecolor(plt.cm.jet(0.))
for ax in plt.gcf().axes:
ax.set_xlim(-range_lim, range_lim)
ax.set_ylim(-range_lim, range_lim)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.invert_yaxis()
if output_dir:
plt.tight_layout()
plt.savefig(os.path.join(output_dir, 'flow_k{}_density.png'.format(len(flow)-1)))
plt.close()
# --------------------
# Run
# --------------------
if __name__ == '__main__':
args = parser.parse_args()
args.device = torch.device('cuda:0' if torch.cuda.is_available() and not args.no_cuda else 'cpu')
torch.manual_seed(args.seed)
if args.device.type == 'cuda': torch.cuda.manual_seed(args.seed)
# setup flow
flow = nn.Sequential(AffineTransform(args.learn_base), *[PlanarTransform() for _ in range(args.flow_length)]).to(args.device)
# setup target potential to approx
u_z = vars()[args.target_potential]
# setup base distribution
base_dist = D.MultivariateNormal(torch.zeros(2).to(args.device), args.base_sigma * torch.eye(2).to(args.device))
if args.restore_file:
# get filename
filename = os.path.basename(args.restore_file)
args.flow_length = int(filename.partition('length_')[-1].rpartition('.')[0])
# reset output dir
args.output_dir = os.path.dirname(args.restore_file)
# load state
state = torch.load(args.restore_file, map_location=args.device)
# compatibility code;
# 1/ earlier models did not include step and optimizer checkpoints;
try:
flow_state = state['flow_state']
optimizer_state = state['optimizer_state']
args.start_step = state['step']
except KeyError:
# if state is not a dict, load just the model state
flow_state = state
optimizer_state = None
# 2/ some saved checkpoints may not have a first affine layer
try:
flow_state['0.mu']
except KeyError:
# if no first affine layer, reload a flow model without one
flow = nn.Sequential(*[PlanarTransform(args.init_sigma) for _ in range(args.flow_length)])
flow.load_state_dict(flow_state)
if not os.path.isdir(args.output_dir):
os.makedirs(args.output_dir)
if args.train:
optimizer = torch.optim.RMSprop(flow.parameters(), lr=args.lr, momentum=0.9, alpha=0.90, eps=1e-6, weight_decay=args.weight_decay)
if args.restore_file and optimizer_state:
optimizer.load_state_dict(optimizer_state)
args.n_steps = args.start_step + args.n_steps
optimize_flow(base_dist, flow, u_z, optimizer, args)
if args.evaluate:
plot_flow(base_dist, flow, os.path.join(args.output_dir, 'approximating_flow.png'), args)
if args.plot:
plot_target_density(u_z, plt.gca(), output_dir=args.output_dir)
plot_flow_density(base_dist, flow, plt.gca(), output_dir=args.output_dir)