forked from pixray/pixray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslip.py
executable file
·186 lines (148 loc) · 6.8 KB
/
slip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# code adapted from https://github.com/facebookresearch/SLIP/issues/2#issuecomment-1001052198
import sys
import os
from collections import OrderedDict
import torch
import torch.nn as nn
from torchvision import transforms
from clip import clip
all_slip_models = ["SLIP_VITS16", "SLIP_VITB16", "SLIP_VITL16",
"SLIP_CC3M", "SLIP_CC12M",
"SIMCLR_VITS16",
"CLIP_VITS16", "CLIP_VITB16", "CLIP_VITL16"]
from util import wget_file
def normalize(img, input_range = None):
if input_range is None:
minv = img.min()
else:
minv = input_range[0]
img = img - minv
if input_range is None:
maxv = img.max()
else:
maxv = input_range[1] - minv
if maxv != 0:
img = img / maxv
return img
def adjust_range(img, out_range, input_range = None):
img = normalize(img, input_range = input_range)
img = img * (out_range[1] - out_range[0])
img = img + out_range[0]
return img
class CLIP_Base():
# Default CLIP model from OpenAI
def __init__(self, model, preprocess, device):
self.device = device
self.model = model.eval()
self.input_resolution = self.model.visual.input_resolution
self.output_dim = self.model.visual.output_dim
self.preprocess_transform = transforms.Compose([
transforms.Resize(self.input_resolution),
transforms.CenterCrop(self.input_resolution),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
def preprocess(self, imgs, input_range = None):
imgs = adjust_range(imgs, [0.,1.], input_range = input_range)
return self.preprocess_transform(imgs)
def encode_image(self, imgs, input_range = None, apply_preprocess = True):
if apply_preprocess:
imgs = self.preprocess(imgs, input_range = None)
img_embeddings = self.model.encode_image(imgs)
return img_embeddings / img_embeddings.norm(dim=-1, keepdim=True)
def encode_text(self, text):
text = clip.tokenize(text).to(self.device)
return self.model.encode_text(text).float()
def encode_texts(self, texts):
text_embeddings = torch.stack([self.model.encode_text(clip.tokenize(text).to(self.device)).detach().clone() for text in texts])
return text_embeddings / text_embeddings.norm(dim=-1, keepdim=True)
# TODO: this is very hacky, must fix this later (submodule dependency)
SLIP_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'SLIP')
# print("APPENDING PATH ", SLIP_PATH)
sys.path.append(SLIP_PATH)
import models
from tokenizer import SimpleTokenizer
import utils
class SLIP_Base():
def __init__(self, model_name, device):
self.device = device
self.input_resolution = 224
# HA HA HA, this could be a lookup table but I'm too lazy to change it
if model_name == "SLIP_VITS16":
ckpt_file = f"slip_small_100ep.pt"
elif model_name == "SLIP_VITB16":
ckpt_file = f"slip_base_100ep.pt"
elif model_name == "SLIP_VITL16":
ckpt_file = f"slip_large_100ep.pt"
elif model_name == "SIMCLR_VITS16":
ckpt_file = f"simclr_small_25ep.pt"
elif model_name == "CLIP_VITS16":
ckpt_file = f"clip_small_25ep.pt"
elif model_name == "CLIP_VITB16":
ckpt_file = f"clip_base_25ep.pt"
elif model_name == "CLIP_VITL16":
ckpt_file = f"clip_large_25ep.pt"
elif model_name == "SLIP_CC3M":
ckpt_file = f"slip_base_cc3m_40ep.pt"
elif model_name == "SLIP_CC12M":
ckpt_file = f"slip_base_cc12m_35ep.pt"
else:
print(f"slip model {model_name} not known, aborting")
sys.exit(1)
ckpt_path = f"models/{ckpt_file}"
if not os.path.exists(ckpt_path):
url = f"https://dl.fbaipublicfiles.com/slip/{ckpt_file}"
wget_file(url, ckpt_path)
self.preprocess_transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
self.tokenizer = SimpleTokenizer()
ckpt = torch.load(ckpt_path, map_location='cpu')
state_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
state_dict[k.replace('module.', '')] = v
# create model
old_args = ckpt['args']
old_args.model = model_name
# these two are the same model on different training data...
if old_args.model == "SLIP_CC3M" or old_args.model == "SLIP_CC12M":
old_args.model = "SLIP_VITB16"
model = getattr(models, old_args.model)(rand_embed=False,
ssl_mlp_dim=old_args.ssl_mlp_dim, ssl_emb_dim=old_args.ssl_emb_dim)
model.cuda().requires_grad_(False).eval()
model.load_state_dict(state_dict, strict=True)
n_params = sum(p.numel() for p in model.parameters())
print("Loaded perceptor %s: %.2fM params" %(model_name, (n_params/1000000)))
self.model = utils.get_model(model)
def preprocess(self, imgs, input_range = None):
imgs = adjust_range(imgs, [0.,1.], input_range = input_range)
return self.preprocess_transform(imgs)
def encode_image(self, imgs, input_range = None, apply_preprocess = True):
if apply_preprocess:
imgs = self.preprocess(imgs, input_range = input_range)
image_features = self.model.encode_image(imgs)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
return image_features
def encode_text(self, texts):
texts = self.tokenizer(texts).cuda(non_blocking=True)
texts = texts.view(-1, 77).contiguous()
text_embeddings = self.model.encode_text(texts)
return text_embeddings
def encode_texts(self, texts):
texts = self.tokenizer(texts).cuda(non_blocking=True)
texts = texts.view(-1, 77).contiguous()
text_embeddings = self.model.encode_text(texts)
text_embeddings = text_embeddings / text_embeddings.norm(dim=-1, keepdim=True)
return text_embeddings.unsqueeze(1)
def get_clip_perceptor(clip_model_name, device):
if clip_model_name in clip.available_models():
perceptor, preprocess = clip.load(clip_model_name, download_root="models")
perceptor = perceptor.requires_grad_(False).eval().to(device)
n_params = sum(p.numel() for p in perceptor.parameters())
in_res = perceptor.visual.input_resolution
print(f"Loaded CLIP {clip_model_name}: {in_res}x{in_res} and {n_params/1000000:.2f}M params")
clip_perceptor = CLIP_Base(perceptor, preprocess, device)
else:
clip_perceptor = SLIP_Base(clip_model_name, device)
return clip_perceptor