forked from pixray/pixray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpixeldrawer.py
executable file
·410 lines (355 loc) · 16.1 KB
/
pixeldrawer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
from DrawingInterface import DrawingInterface
import pydiffvg
import torch
from torch.nn import functional as F
import skimage
import skimage.io
import random
import ttools.modules
import argparse
import math
import torchvision
import torchvision.transforms as transforms
import numpy as np
import PIL.Image
from util import str2bool
from perlin_numpy import generate_fractal_noise_3d
def rect_from_corners(p0, p1):
x1, y1 = p0
x2, y2 = p1
pts = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]]
return pts
# canonical interpolation function, like https://p5js.org/reference/#/p5/map
def map_number(n, start1, stop1, start2, stop2):
return ((n-start1)/(stop1-start1))*(stop2-start2)+start2;
def diamond_from_corners(p0, p1):
x1, y1 = p0
x2, y2 = p1
n = 1
hyA = map_number(-2, -n, n, y1, y2)
hyB = map_number( 2, -n, n, y1, y2)
hyH = map_number( 0, -n, n, y1, y2)
hxH = map_number( 0, -n, n, x1, x2)
pts = [[hxH, hyA], [x1, hyH], [hxH, hyB], [x2, hyH]]
return pts
def tri_from_corners(p0, p1, is_up):
x1, y1 = p0
x2, y2 = p1
n = 1
hxA = map_number( 2, -n, n, x1, x2)
hxB = map_number(-2, -n, n, x1, x2)
hxH = map_number( 0, -n, n, x1, x2)
if is_up:
pts = [[hxH, y1], [hxB, y2], [hxA, y2]]
else:
pts = [[hxH, y2], [hxA, y1], [hxB, y1]]
return pts
def hex_from_corners(p0, p1):
x1, y1 = p0
x2, y2 = p1
n = 3
hyA = map_number(4, -n, n, y1, y2)
hyB = map_number(2, -n, n, y1, y2)
hyC = map_number(-2, -n, n, y1, y2)
hyD = map_number(-4, -n, n, y1, y2)
hxH = map_number(0, -n, n, x1, x2)
pts = [[hxH, hyA], [x1, hyB], [x1, hyC], [hxH, hyD], [x2, hyC], [x2, hyB]]
return pts
def knit_from_corners(p0, p1):
x1, y1 = p0
x2, y2 = p1
xm = (x1 + x2) / 2.0
lean_up = 0.45
slump_down = 0.30
fall_back = 0.2
y_up1 = map_number(lean_up, 0, 1, y2, y1)
y_up2 = map_number(1 + lean_up, 0, 1, y2, y1)
y_down1 = map_number(slump_down, 0, 1, y1, y2)
y_down2 = map_number(1 + slump_down, 0, 1, y1, y2)
x_fall_back1 = map_number(fall_back, 0, 1, x2, xm)
x_fall_back2 = map_number(fall_back, 0, 1, x1, xm)
pts = []
# center bottom
pts.append([xm, y_down2])
# vertical line on right side
pts.extend([[x2, y_up1], [x2, y_up2]])
# horizontal line back
pts.append([x_fall_back1, y_up2])
# center top
pts.append([xm, y_down1])
# back up to top
pts.append([x_fall_back2, y_up2])
# vertical line on left side
pts.extend([[x1, y_up2], [x1, y_up1]])
return pts
shift_pixel_types = ["hex", "rectshift", "diamond"]
def gkern(size, gamma):
"""
creates gaussian kernel with side length `l` and a sigma of `sig`
https://stackoverflow.com/a/43346070/6028830
"""
sig = size/gamma
ax = np.linspace(-(size - 1) / 2., (size - 1) / 2., size)
gauss = np.exp(-0.5 * np.square(ax) / np.square(sig))
kernel = -np.outer(gauss, gauss)
kernel = (kernel-kernel.min()) / (kernel.max()-kernel.min())
return kernel * (size**2) / np.sum(kernel) # normalize such that the sum of pixel was the same as the original
class PixelDrawer(DrawingInterface):
@staticmethod
def add_settings(parser):
parser.add_argument("--pixel_size", nargs=2, type=int, help="Pixel size (width height)", default=None, dest='pixel_size')
parser.add_argument("--pixel_scale", type=float, help="Pixel scale", default=None, dest='pixel_scale')
parser.add_argument("--pixel_type", type=str, help="rect, rectshift, hex, tri, diamond, knit", default="rect", dest='pixel_type')
parser.add_argument("--pixel_edge_check", type=str2bool, help="ensure grid is symmetric", default=True, dest='pixel_edge_check')
parser.add_argument("--pixel_iso_check", type=str2bool, help="ensure tri and hex shapes are w/h scaled", default=True, dest='pixel_iso_check')
return parser
def __init__(self, settings):
super(DrawingInterface, self).__init__()
self.canvas_width = settings.size[0]
self.canvas_height = settings.size[1]
# current logic: assume 16x9, or 4x5, but check for 1x1 (all others must be provided explicitly)
# TODO: could compute this based on output size instead?
if settings.pixel_size is not None:
self.num_cols, self.num_rows = settings.pixel_size
elif self.canvas_width == self.canvas_height:
self.num_cols, self.num_rows = [40, 40]
elif self.canvas_width < self.canvas_height:
self.num_cols, self.num_rows = [40, 50]
else:
self.num_cols, self.num_rows = [80, 45]
self.pixel_type = settings.pixel_type
if settings.pixel_iso_check and settings.pixel_size is None:
if self.pixel_type == "tri":
# auto-adjust triangles to be wider if not specified
self.num_cols = int(1.414 * self.num_cols)
elif self.pixel_type == "hex":
# auto-adjust hexes to be narrower if not specified
self.num_rows = int(1.414 * self.num_rows)
elif self.pixel_type == "diamond":
self.num_rows = int(2 * self.num_rows)
# we can also "scale" pixels -- scaling "up" meaning fewer rows/cols, etc.
if settings.pixel_scale is not None and settings.pixel_scale > 0:
self.num_cols = int(self.num_cols / settings.pixel_scale)
self.num_rows = int(self.num_rows / settings.pixel_scale)
shrink = False
if self.num_cols>self.canvas_width:
shrink = True
self.num_cols = self.canvas_width
if self.num_rows>self.canvas_height:
shrink = True
self.num_rows = self.canvas_height
if shrink:
print('pixel grid size should not be larger than output pixel size: reducing pixel grid')
print(f"Running pixeldrawer with {self.num_cols}x{self.num_rows} grid")
if settings.pixel_edge_check:
if self.pixel_type in shift_pixel_types:
if self.num_cols % 2 == 0:
self.num_cols = self.num_cols + 1
if self.num_rows % 2 == 0:
self.num_rows = self.num_rows + 1
elif self.pixel_type == "tri":
if self.num_cols % 2 == 0:
self.num_cols = self.num_cols + 1
if self.num_rows % 2 == 1:
self.num_rows = self.num_rows + 1
self.transparent = settings.transparent
# if self.transparent:
# if settings.alpha_use_g:
# self.gkern = torch.tensor(gkern(self.canvas_width, settings.alpha_gamma))
# else:
self.gkern = None
def load_model(self, settings, device):
# gamma = 1.0
# Use GPU if available
pydiffvg.set_use_gpu(torch.cuda.is_available())
pydiffvg.set_device(device)
self.device = device
def get_opts(self):
return self.opts
def rand_init(self, toksX, toksY):
self.init_from_tensor(None)
def encode_image(self, init_tensor):
# print("----> SHAPE", self.num_rows, self.num_cols)
canvas_width, canvas_height = self.canvas_width, self.canvas_height
num_rows, num_cols = self.num_rows, self.num_cols
cell_width = canvas_width / num_cols
cell_height = canvas_height / num_rows
tensor_cell_height = 0
tensor_cell_width = 0
max_tensor_num_subsamples = 4
tensor_subsamples_x = []
tensor_subsamples_y = []
if init_tensor is not None:
tensor_shape = init_tensor.shape
tensor_cell_width = tensor_shape[3] / num_cols
tensor_cell_height = tensor_shape[2] / num_rows
if int(tensor_cell_width) < max_tensor_num_subsamples:
tensor_subsamples_x = [i for i in range(int(tensor_cell_width))]
else:
step_size_x = tensor_cell_width / max_tensor_num_subsamples
tensor_subsamples_x = [int(i*step_size_x) for i in range(max_tensor_num_subsamples)]
if int(tensor_cell_height) < max_tensor_num_subsamples:
tensor_subsamples_y = [i for i in range(int(tensor_cell_height))]
else:
step_size_y = tensor_cell_height / max_tensor_num_subsamples
tensor_subsamples_y = [int(i*step_size_y) for i in range(max_tensor_num_subsamples)]
# print(tensor_shape, tensor_cell_width, tensor_cell_height,tensor_subsamples_x,tensor_subsamples_y)
# Initialize Random Pixels
shapes = []
shape_groups = []
colors = []
scaled_init_tensor = (init_tensor[0] + 1.0) / 2.0
for r in range(num_rows):
tensor_cur_y = int(r * tensor_cell_height)
cur_y = r * cell_height
num_cols_this_row = num_cols
col_offset = 0
if self.pixel_type in shift_pixel_types and r % 2 == 0:
num_cols_this_row = num_cols - 1
col_offset = 0.5
for c in range(num_cols_this_row):
tensor_cur_x = (col_offset + c) * tensor_cell_width
cur_x = (col_offset + c) * cell_width
if init_tensor is None:
cell_color = torch.tensor([random.random(), random.random(), random.random(), 1.0])
else:
try:
rgb_sum = [0, 0, 0]
rgb_count = 0
for t_x in tensor_subsamples_x:
cur_subsample_x = tensor_cur_x + t_x
for t_y in tensor_subsamples_y:
cur_subsample_y = tensor_cur_y + t_y
if(cur_subsample_x < tensor_shape[3] and cur_subsample_y < tensor_shape[2]):
rgb_count += 1
rgb_sum[0] += scaled_init_tensor[0][int(cur_subsample_y)][int(cur_subsample_x)]
rgb_sum[1] += scaled_init_tensor[1][int(cur_subsample_y)][int(cur_subsample_x)]
rgb_sum[2] += scaled_init_tensor[2][int(cur_subsample_y)][int(cur_subsample_x)]
else:
print(f"Ignoring out of bounds entry: {cur_subsample_x},{cur_subsample_y}")
if rgb_count == 0:
print("init cell count is 0, this shouldn't happen. but it did?")
rgb_count = 1
cell_color = torch.tensor([rgb_sum[0]/rgb_count, rgb_sum[1]/rgb_count, rgb_sum[2]/rgb_count, 1.0])
except BaseException as error:
print("WTF", error)
mono_color = random.random()
cell_color = torch.tensor([mono_color, mono_color, mono_color, 1.0])
raise error
colors.append(cell_color)
p0 = [cur_x, cur_y]
p1 = [cur_x+cell_width, cur_y+cell_height]
if self.pixel_type == "hex":
pts = hex_from_corners(p0, p1)
elif self.pixel_type == "tri":
pts = tri_from_corners(p0, p1, (r + c) % 2 == 0)
elif self.pixel_type == "diamond":
pts = diamond_from_corners(p0, p1)
elif self.pixel_type == "knit":
pts = knit_from_corners(p0, p1)
else:
pts = rect_from_corners(p0, p1)
pts = torch.tensor(pts, dtype=torch.float32).view(-1, 2)
path = pydiffvg.Polygon(pts, True)
# path = pydiffvg.Rect(p_min=torch.tensor(p0), p_max=torch.tensor(p1))
shapes.append(path)
path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([len(shapes) - 1]), stroke_color = None, fill_color = cell_color)
shape_groups.append(path_group)
# Just some diffvg setup
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(canvas_width, canvas_height, 2, 2, 0, None, *scene_args)
color_vars = []
for group in shape_groups:
group.fill_color.requires_grad = True
color_vars.append(group.fill_color)
return color_vars, img, shapes, shape_groups
def init_from_tensor(self, init_tensor):
self.color_vars, self.img, self.shapes, self.shape_groups = (
self.encode_image(init_tensor)
)
def get_opts(self, decay_divisor=1):
# Optimizers
# points_optim = torch.optim.Adam(points_vars, lr=1.0)
# width_optim = torch.optim.Adam(stroke_width_vars, lr=0.1)
color_optim = torch.optim.Adam(self.color_vars, lr=0.03/decay_divisor)
self.opts = [color_optim]
return self.opts
def reapply_from_tensor(self, new_tensor):
color_vars, *_ = self.encode_image(new_tensor)
for old_color_var, new_color_var in zip(self.color_vars, color_vars):
old_color_var.data = new_color_var.data
def get_z_from_tensor(self, ref_tensor):
return None
def get_num_resolutions(self):
return None
def synth(self, cur_iteration: int, return_transparency: bool=False):
"""Uses pydiffvg to render the image.
Returns synthesized RGB image when return_transparency is False.
Returns synthesized (RGB,A) tuple when return_transparency is True.
"""
if cur_iteration < 0:
return self.img
render = pydiffvg.RenderFunction.apply
scene_args = pydiffvg.RenderFunction.serialize_scene(\
self.canvas_width, self.canvas_height, self.shapes, self.shape_groups)
img = render(self.canvas_width, self.canvas_height, 2, 2, cur_iteration, None, *scene_args)
img_h, img_w = img.shape[0], img.shape[1]
alpha = img[:, :, 3:4]
if return_transparency:
res = [1,2,4,8,16][random.randint(0,4)] # resolution of the perlin noise
noise = generate_fractal_noise_3d((img_h, img_w, 3), (res, res, 1))
img = alpha * img[:, :, :3] + (1 - alpha) * torch.tensor(noise, dtype=torch.float32, device=self.device)
# else:
# img = alpha * img[:, :, :3]
# img = img[:, :, :3]
img = img.unsqueeze(0)
img = img.permute(0, 3, 1, 2) # NHWC -> NCHW
# if cur_iteration == 0:
# print("SHAPE", img.shape)
self.img = img
if return_transparency:
if self.gkern is not None:
return img, alpha*self.gkern.to(self.device) # weight by the gaussian mask
else:
return img, alpha
else:
return img
@torch.no_grad()
def to_image(self):
img = self.img.detach().cpu().numpy()[0]
img = np.transpose(img, (1, 2, 0))
img = np.clip(img, 0, 1)
img = np.uint8(img * 255)
pimg = PIL.Image.fromarray(img, mode="RGB")
return pimg
def clip_z(self):
with torch.no_grad():
for group in self.shape_groups:
group.fill_color.data[:3].clamp_(0.0, 1.0)
group.fill_color.data[3].clamp_(0.0 if self.transparent else 1.0, 1.0)
def get_z(self):
groups = []
for g in self.shape_groups:
groups.append(g.fill_color.data)
groups = torch.stack(groups)
groups.requires_grad_()
return groups
def get_z_copy(self):
shape_groups_copy = []
for group in self.shape_groups:
group_copy = torch.clone(group.fill_color.data)
shape_groups_copy.append(group_copy)
shape_groups_copy = torch.stack(shape_groups_copy)
return shape_groups_copy
def set_z(self, new_z):
l = len(new_z)
for l in range(len(new_z)):
active_group = self.shape_groups[l]
new_group = new_z[l]
active_group.fill_color.data.copy_(new_group)
return None
@torch.no_grad()
def to_svg(self):
pydiffvg.save_svg("./pixels.svg", self.canvas_width, self.canvas_height, self.shapes, self.shape_groups)