forked from trondkr/model2roms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpolation.f90
301 lines (253 loc) · 15.9 KB
/
interpolation.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
Module interpolation
implicit none
contains
subroutine doVertInter(outdat,dat,bathymetry,zr,zs,Nroms,Nsoda,II,JJ,xi_rho,eta_rho)
! ----------------------------------
! Program : doVertInter
!
! This routine interpolates from z-levels to sigma levels using linear interpolation.
!
! The index values in python goes from 0 toN while in Fortran they run from 1 to N+1. This is important to
! remember if one wants to compare input index wtih output index in fortran and python.
!
! This routine assumes that the two depth matrixes zr (ROMS) and zs (SODA) are arranged from shallowest
! (index=1) to deepest (index=N+1). The depth matrizes must also be negative (if positive, reverse all
! comparison signs (e.g. LT, GT) in the program or multiply with minus 1). The input data are arranged with
! deepest values at highest index (N+1 e.g. dat(N+1)==bottom, dat(1)==surface). This is done so because
! it is the way SODA data are organized (bottom at highest index). However, ROMS output files are organized vice versa, so
! to accomodate that the output values are stored according to the ROMS structure. Highest index (N+1) equals surface,
! while lowest index equals bottom (index=1)(see how outdat(kc,jc,ic) is used opposite of the loop over kc).
!
! Trond Kristiansen, December 2008, January, and March 2009
! Rutgers University, NJ.
! -------------------------------------------------------------------------------------------------------
!
! USAGE: Compile this routine using Intel Fortran compiler and create
! a python module using the command:
!
! For Python 3 also add the LDFLAG:
! https://github.com/conda-forge/f90wrap-feedstock/issues/1
! export LDFLAGS="-undefined dynamic_lookup -bundle"
! f2py --verbose --fcompiler=intelem -c -m interpolation interpolation.f90
!
! The resulting module is imported to python using:
! import vertInterp as interp2D
! To call the function from python use:
! interp2D.doHorInterpolation(dat,bathymetry,outdat,zr,zs,Nroms,Nsoda,II,JJ)
!
! where: dat is the data such as temperature (3D structure (z,y,x))
! bathymetry is the 2D bottom matrix from the output grid (in ROMS this is usually 'h')
! outdat is a 3D output array with the correct size (Nroms,JJ,II)
! zr is the depth matrix for the output grid (Nroms,JJ,II)
! zs is the 1D SODA depth-matrix (e.g. zs=[5,10,20,30])
! Nroms is the total depth levels in output grid
! JJ is the total grid points in eta direction
! II is the total grid points in xi direction
! -------------------------------------------------------------------------------------------------------
REAL(4) rz2, rz1, fill
integer eta_rho, xi_rho, II, JJ, ic, jc, kc, kT, kkT, Nsoda, Nroms
REAL(4), dimension(Nsoda,JJ,II) :: dat
REAL(4), dimension(eta_rho,xi_rho) :: bathymetry
REAL(4), dimension(Nroms,JJ,II) :: outdat
REAL(4), dimension(Nsoda) :: zs
REAL(4), dimension(Nroms,eta_rho,xi_rho) :: zr
!f2py intent(in,out,overwrite) outdat
!f2py intent(in,overwrite) dat, bathymetry, zr, zs
!f2py intent(in,overwrite) Nroms, Nsoda, JJ, II, xi_rho, eta_rho
!f2py intent(hide) ic,jc,kc,kT,rz1,rz2, kkT
fill=-10000
do jc=1,JJ
do ic=1,II
do kc=1,Nroms
! CASE 1: ROMS deeper than SODA. This part searches for deepest good value if ROMS depth is deeper
! than SODA. This means that if no value, or only fill_value, is available from SODA where ROMS is
! deepest, the closest value from SODA is found by looping upward in the water column.
IF (zr(kc,jc,ic) .LT. zs(Nsoda)) THEN
outdat(kc,jc,ic)=dat(Nsoda,jc,ic)
if (MAXVAL(dat(:,jc,ic)) .GT. fill) then
if (dat(Nsoda,jc,ic) .LT. fill) then
!print*,'Inside dovert and finding deepest depth with good values. current',dat(Nsoda,jc,ic)
DO kT=1,Nsoda
if (dat(Nsoda-kT,jc,ic) .GT. fill) then
print*,'working on depth',kT,'with value',dat(kT,jc,ic)
outdat(kc,jc,ic)=dat(Nsoda-kT,jc,ic)
print*,'Able to find good value at depth ', Nsoda-kT
exit
end if
end do
end if
end if
!print*,zr(kc,jc,ic),zs(Nsoda),dat(Nsoda,jc,ic),jc,ic,'case 1'
! CASE 2: ROMS shallower than SODA
ELSE IF (zr(kc,jc,ic) .GT. zs(1)) THEN
outdat(kc,jc,ic)=dat(1,jc,ic)
ELSE
! DO LOOP BETWEEN SURFACE AND BOTTOM
DO kT=1,Nsoda
! CASE 3: ROMS deeper than SODA for one layer, but shallower than next SODA layer (bottom in between)
! Deeper than some SODA depth layer, but shallower than next layer which is below bottom
IF (zr(kc,jc,ic) .LE. zs(kT) .AND. &
-(bathymetry(jc,ic)) .GT. zs(kT+1)) THEN
outdat(kc,jc,ic)=dat(kT,jc,ic)
! We do not want to give the deepest depth a fill_value, so we find
! the closest value to deepest depth.
if (MAXVAL(dat(:,jc,ic)) .GT. fill) then
if (dat(kT,jc,ic) .LE. fill) then
!print*,'case3:Need to find better value for depth ',kT,'which has value ',dat(kT,jc,ic)
DO kkT=1,Nsoda
if (dat(kT-kkT,jc,ic) .GT. fill) then
outdat(kc,jc,ic)=dat(kT-kkT,jc,ic)
exit
end if
end do
end if
end if
! CASE 4: Special case where ROMS layers are much deeper than in SODA
ELSE IF (zr(kc,jc,ic) .LE. zs(kT) .AND. dat(kT,jc,ic) .GT. fill &
.AND. dat(kT+1,jc,ic) .LE. fill) THEN
outdat(kc,jc,ic)=dat(kT,jc,ic)
! CASE 5: ROMS layer in between two SODA layers
! This is the typical case for most layers
ELSE IF ( (zr(kc,jc,ic) .LE. zs(kT)) .AND. &
(zr(kc,jc,ic) .GE. zs(kT+1)) .AND. &
(-bathymetry(jc,ic) .LE. zs(kT+1)) ) THEN
rz2 = abs((zr(kc,jc,ic)-zs(kT+1))/ &
(abs(zs(kT+1))-abs(zs(kT))))
rz1 = 1.0-rz2
outdat(kc,jc,ic) = (rz1*dat(kT+1,jc,ic) &
+ rz2*dat(kT,jc,ic))
if (MAXVAL(dat(:,jc,ic)) .GT. fill) then
if (dat(kT,jc,ic) .LE. fill .OR. dat(kT+1,jc,ic) .LE. fill) then
!print*,'case4:Need to find better value for depth ',kT,kT+1,'which has &
! values ',dat(kT,jc,ic),dat(kT+1,jc,ic)
DO kkT=1,Nsoda
if (dat(kT-kkT,jc,ic) .GT. fill .and. dat(kT-kkT+1,jc,ic) .GT. fill ) then
!print*,'CASE 4: Found good value at depth',kT-kkT,kt-kkT+1
!print*,'with values',dat(kT-kkT,jc,ic), dat(kt-kkT+1,jc,ic)
outdat(kc,jc,ic) = (rz1*dat(kT+1-kkT,jc,ic) &
+ rz2*dat(kT-kkT,jc,ic))
exit
end if
END DO
end if
end if
exit
END IF
! DO LOOP BETWEEN SURFACE AND BOTTOM: CASE 3,4,5
END DO
! TEST ALL CASES IF LOOP: CASE 1,2,3,4,5
END IF
end do
end do
end do
end subroutine doVertInter
subroutine rho2u(udata,rhodata,II,JJ,KK)
! ----------------------------------
! Program : rho2u
!
! This routine interpolates RHO points to U points using simple linear interpolation
! The input matrix (rhodata) is a matrix of size (JJ,II). The output matrix is the
! interpolated RHO values at U points with dimensions (JJ,II-1).
! Trond Kristiansen, January 2009
! Rutgers University, NJ.
! -------------------------------------------------------------------------------------------------------
integer KK, II, JJ, kc, ic, jc, fill
REAL(4), dimension(KK,JJ,II) :: rhodata
REAL(4), dimension(KK,JJ,II-1) :: udata
!f2py intent(in,out,overwrite) udata
!f2py intent(in,overwrite) rhodata, KK, JJ, II
!f2py intent(hide) ic,jc,kc, fill
fill=10000
print*,'---> Started horisontal rho2u interpolation'
do kc=1,KK
do jc=1,JJ
do ic=2,II-1
udata(kc,jc,1)=rhodata(kc,jc,1)
! Now make sure that if we have two stations where one has values
! and the other not, we only use the good value
! case 1: one value is good (jc+1) other bad (jc-1)
if (abs(rhodata(kc,jc,ic-1)) > fill .AND. abs(rhodata(kc,jc,ic+1)) < fill) then
udata(kc,jc,ic)=(rhodata(kc,jc,ic+1))
! case 2: one value is good (jc-1) other bad (jc+1)
else if (abs(rhodata(kc,jc,ic-1)) < fill .AND. abs(rhodata(kc,jc,ic+1)) > fill) then
udata(kc,jc,ic)=(rhodata(kc,jc,ic-1))
! Both values are bad:
else if (abs(rhodata(kc,jc,ic-1)) > fill .AND. abs(rhodata(kc,jc,ic+1)) > fill) then
udata(kc,jc,ic)=0.0
! Both values are good and we do linear interpolation
else
udata(kc,jc,ic)=(rhodata(kc,jc,ic-1)+rhodata(kc,jc,ic+1))*0.5
end if
end do
end do
end do
print*,'-----> Ended horisontal rho2u interpolation'
end subroutine rho2u
subroutine rho2v(vdata,rhodata,II,JJ,KK)
! ----------------------------------
! Program : rho2v
!
! This routine interpolates RHO points to V points using simple linear interpolation
! The input matrix (rhodata) is a matrix of size (JJ,II). The output matrix is the
! interpolated RHO values at U points with dimensions (JJ-1,II).
! Trond Kristiansen, January, February, and March2009
! Rutgers University, NJ.
! -------------------------------------------------------------------------------------------------------
integer KK, II, JJ, kc, ic, jc, fill
REAL(4), dimension(KK,JJ,II) :: rhodata
REAL(4), dimension(KK,JJ-1,II) :: vdata
!f2py intent(in,out,overwrite) vdata
!f2py intent(in,overwrite) rhodata, KK, JJ, II
!f2py intent(hide) ic,jc,kc, fill
fill=10000
print*,'---> Started horisontal rho2v interpolation'
do kc=1,KK
do jc=2,JJ-1
do ic=1,II
vdata(kc,1,ic)=rhodata(kc,1,ic)
if (abs(rhodata(kc,jc-1,ic)) > fill .AND. abs(rhodata(kc,jc+1,ic)) < fill) then
vdata(kc,jc,ic)=(rhodata(kc,jc+1,ic))
else if (abs(rhodata(kc,jc-1,ic)) < fill .AND. abs(rhodata(kc,jc+1,ic)) > fill) then
vdata(kc,jc,ic)=(rhodata(kc,jc-1,ic))
else if (abs(rhodata(kc,jc-1,ic)) > fill .AND. abs(rhodata(kc,jc+1,ic)) > fill) then
vdata(kc,jc,ic)=0.0
else
vdata(kc,jc,ic)=(rhodata(kc,jc-1,ic)+rhodata(kc,jc+1,ic))*0.5
end if
end do
end do
end do
print*,'-----> Ended horisontal rho2v interpolation'
end subroutine rho2v
subroutine rotate(urot,vrot,u_rho,v_rho,angle,II,JJ,KK)
! ----------------------------------
! Program : rotate
!
! This routine rotates u and v velocities in the North-South grid to an
! the output North-South grid with angle "angle"
! Trond Kristiansen, January 2009
! Rutgers University, NJ.
! -------------------------------------------------------------------------------------------------------
REAL(4), dimension(KK,JJ,II) :: urot, vrot
REAL(4), dimension(KK,JJ,II) :: u_rho, v_rho
REAL(4), dimension(JJ,II) :: angle
integer KK, II, JJ, kc, ic, jc
!f2py intent(in,out,overwrite) urot, vrot
!f2py intent(in,overwrite) u_rho, v_rho, angle, KK, JJ, II
!f2py intent(hide) ic,jc,kc
print*,'---> Started rotation of velocities'
do kc=1,KK
do jc=1,JJ
do ic=1,II
! Look way down on this page
! https://www.myroms.org/forum/viewtopic.php?f=3&t=295
urot(kc,jc,ic)=u_rho(kc,jc,ic)*COS(angle(jc,ic)) + v_rho(kc,jc,ic)*SIN(angle(jc,ic))
vrot(kc,jc,ic)=-u_rho(kc,jc,ic)*SIN(angle(jc,ic)) + v_rho(kc,jc,ic)*COS(angle(jc,ic))
!print*, vrot(kc,jc,ic), urot(kc,jc,ic), kc,jc,ic !, sin(angle(jc,ic)), cos(angle(jc,ic))
!print*, v_rho(kc,jc,ic), u_rho(kc,jc,ic), ic,jc
end do
end do
end do
print*,'-----> Ended rotation of velocities'
end subroutine rotate
end module interpolation