-
Notifications
You must be signed in to change notification settings - Fork 978
/
Copy pathpolicy_value_net_tensorflow.py
145 lines (129 loc) · 6.52 KB
/
policy_value_net_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# -*- coding: utf-8 -*-
"""
An implementation of the policyValueNet in Tensorflow
Tested in Tensorflow 1.4 and 1.5
@author: Xiang Zhong
"""
import numpy as np
import tensorflow as tf
class PolicyValueNet():
def __init__(self, board_width, board_height, model_file=None):
self.board_width = board_width
self.board_height = board_height
# Define the tensorflow neural network
# 1. Input:
self.input_states = tf.placeholder(
tf.float32, shape=[None, 4, board_height, board_width])
self.input_state = tf.transpose(self.input_states, [0, 2, 3, 1])
# 2. Common Networks Layers
self.conv1 = tf.layers.conv2d(inputs=self.input_state,
filters=32, kernel_size=[3, 3],
padding="same", data_format="channels_last",
activation=tf.nn.relu)
self.conv2 = tf.layers.conv2d(inputs=self.conv1, filters=64,
kernel_size=[3, 3], padding="same",
data_format="channels_last",
activation=tf.nn.relu)
self.conv3 = tf.layers.conv2d(inputs=self.conv2, filters=128,
kernel_size=[3, 3], padding="same",
data_format="channels_last",
activation=tf.nn.relu)
# 3-1 Action Networks
self.action_conv = tf.layers.conv2d(inputs=self.conv3, filters=4,
kernel_size=[1, 1], padding="same",
data_format="channels_last",
activation=tf.nn.relu)
# Flatten the tensor
self.action_conv_flat = tf.reshape(
self.action_conv, [-1, 4 * board_height * board_width])
# 3-2 Full connected layer, the output is the log probability of moves
# on each slot on the board
self.action_fc = tf.layers.dense(inputs=self.action_conv_flat,
units=board_height * board_width,
activation=tf.nn.log_softmax)
# 4 Evaluation Networks
self.evaluation_conv = tf.layers.conv2d(inputs=self.conv3, filters=2,
kernel_size=[1, 1],
padding="same",
data_format="channels_last",
activation=tf.nn.relu)
self.evaluation_conv_flat = tf.reshape(
self.evaluation_conv, [-1, 2 * board_height * board_width])
self.evaluation_fc1 = tf.layers.dense(inputs=self.evaluation_conv_flat,
units=64, activation=tf.nn.relu)
# output the score of evaluation on current state
self.evaluation_fc2 = tf.layers.dense(inputs=self.evaluation_fc1,
units=1, activation=tf.nn.tanh)
# Define the Loss function
# 1. Label: the array containing if the game wins or not for each state
self.labels = tf.placeholder(tf.float32, shape=[None, 1])
# 2. Predictions: the array containing the evaluation score of each state
# which is self.evaluation_fc2
# 3-1. Value Loss function
self.value_loss = tf.losses.mean_squared_error(self.labels,
self.evaluation_fc2)
# 3-2. Policy Loss function
self.mcts_probs = tf.placeholder(
tf.float32, shape=[None, board_height * board_width])
self.policy_loss = tf.negative(tf.reduce_mean(
tf.reduce_sum(tf.multiply(self.mcts_probs, self.action_fc), 1)))
# 3-3. L2 penalty (regularization)
l2_penalty_beta = 1e-4
vars = tf.trainable_variables()
l2_penalty = l2_penalty_beta * tf.add_n(
[tf.nn.l2_loss(v) for v in vars if 'bias' not in v.name.lower()])
# 3-4 Add up to be the Loss function
self.loss = self.value_loss + self.policy_loss + l2_penalty
# Define the optimizer we use for training
self.learning_rate = tf.placeholder(tf.float32)
self.optimizer = tf.train.AdamOptimizer(
learning_rate=self.learning_rate).minimize(self.loss)
# Make a session
self.session = tf.Session()
# calc policy entropy, for monitoring only
self.entropy = tf.negative(tf.reduce_mean(
tf.reduce_sum(tf.exp(self.action_fc) * self.action_fc, 1)))
# Initialize variables
init = tf.global_variables_initializer()
self.session.run(init)
# For saving and restoring
self.saver = tf.train.Saver()
if model_file is not None:
self.restore_model(model_file)
def policy_value(self, state_batch):
"""
input: a batch of states
output: a batch of action probabilities and state values
"""
log_act_probs, value = self.session.run(
[self.action_fc, self.evaluation_fc2],
feed_dict={self.input_states: state_batch}
)
act_probs = np.exp(log_act_probs)
return act_probs, value
def policy_value_fn(self, board):
"""
input: board
output: a list of (action, probability) tuples for each available
action and the score of the board state
"""
legal_positions = board.availables
current_state = np.ascontiguousarray(board.current_state().reshape(
-1, 4, self.board_width, self.board_height))
act_probs, value = self.policy_value(current_state)
act_probs = zip(legal_positions, act_probs[0][legal_positions])
return act_probs, value
def train_step(self, state_batch, mcts_probs, winner_batch, lr):
"""perform a training step"""
winner_batch = np.reshape(winner_batch, (-1, 1))
loss, entropy, _ = self.session.run(
[self.loss, self.entropy, self.optimizer],
feed_dict={self.input_states: state_batch,
self.mcts_probs: mcts_probs,
self.labels: winner_batch,
self.learning_rate: lr})
return loss, entropy
def save_model(self, model_path):
self.saver.save(self.session, model_path)
def restore_model(self, model_path):
self.saver.restore(self.session, model_path)