-
Notifications
You must be signed in to change notification settings - Fork 979
/
Copy pathgame.py
223 lines (196 loc) · 8.02 KB
/
game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# -*- coding: utf-8 -*-
"""
@author: Junxiao Song
"""
from __future__ import print_function
import numpy as np
class Board(object):
"""board for the game"""
def __init__(self, **kwargs):
self.width = int(kwargs.get('width', 8))
self.height = int(kwargs.get('height', 8))
# board states stored as a dict,
# key: move as location on the board,
# value: player as pieces type
self.states = {}
# need how many pieces in a row to win
self.n_in_row = int(kwargs.get('n_in_row', 5))
self.players = [1, 2] # player1 and player2
def init_board(self, start_player=0):
if self.width < self.n_in_row or self.height < self.n_in_row:
raise Exception('board width and height can not be '
'less than {}'.format(self.n_in_row))
self.current_player = self.players[start_player] # start player
# keep available moves in a list
self.availables = list(range(self.width * self.height))
self.states = {}
self.last_move = -1
def move_to_location(self, move):
"""
3*3 board's moves like:
6 7 8
3 4 5
0 1 2
and move 5's location is (1,2)
"""
h = move // self.width
w = move % self.width
return [h, w]
def location_to_move(self, location):
if len(location) != 2:
return -1
h = location[0]
w = location[1]
move = h * self.width + w
if move not in range(self.width * self.height):
return -1
return move
def current_state(self):
"""return the board state from the perspective of the current player.
state shape: 4*width*height
"""
square_state = np.zeros((4, self.width, self.height))
if self.states:
moves, players = np.array(list(zip(*self.states.items())))
move_curr = moves[players == self.current_player]
move_oppo = moves[players != self.current_player]
square_state[0][move_curr // self.width,
move_curr % self.height] = 1.0
square_state[1][move_oppo // self.width,
move_oppo % self.height] = 1.0
# indicate the last move location
square_state[2][self.last_move // self.width,
self.last_move % self.height] = 1.0
if len(self.states) % 2 == 0:
square_state[3][:, :] = 1.0 # indicate the colour to play
return square_state[:, ::-1, :]
def do_move(self, move):
self.states[move] = self.current_player
self.availables.remove(move)
self.current_player = (
self.players[0] if self.current_player == self.players[1]
else self.players[1]
)
self.last_move = move
def has_a_winner(self):
width = self.width
height = self.height
states = self.states
n = self.n_in_row
moved = list(set(range(width * height)) - set(self.availables))
if len(moved) < self.n_in_row *2-1:
return False, -1
for m in moved:
h = m // width
w = m % width
player = states[m]
if (w in range(width - n + 1) and
len(set(states.get(i, -1) for i in range(m, m + n))) == 1):
return True, player
if (h in range(height - n + 1) and
len(set(states.get(i, -1) for i in range(m, m + n * width, width))) == 1):
return True, player
if (w in range(width - n + 1) and h in range(height - n + 1) and
len(set(states.get(i, -1) for i in range(m, m + n * (width + 1), width + 1))) == 1):
return True, player
if (w in range(n - 1, width) and h in range(height - n + 1) and
len(set(states.get(i, -1) for i in range(m, m + n * (width - 1), width - 1))) == 1):
return True, player
return False, -1
def game_end(self):
"""Check whether the game is ended or not"""
win, winner = self.has_a_winner()
if win:
return True, winner
elif not len(self.availables):
return True, -1
return False, -1
def get_current_player(self):
return self.current_player
class Game(object):
"""game server"""
def __init__(self, board, **kwargs):
self.board = board
def graphic(self, board, player1, player2):
"""Draw the board and show game info"""
width = board.width
height = board.height
print("Player", player1, "with X".rjust(3))
print("Player", player2, "with O".rjust(3))
print()
for x in range(width):
print("{0:8}".format(x), end='')
print('\r\n')
for i in range(height - 1, -1, -1):
print("{0:4d}".format(i), end='')
for j in range(width):
loc = i * width + j
p = board.states.get(loc, -1)
if p == player1:
print('X'.center(8), end='')
elif p == player2:
print('O'.center(8), end='')
else:
print('_'.center(8), end='')
print('\r\n\r\n')
def start_play(self, player1, player2, start_player=0, is_shown=1):
"""start a game between two players"""
if start_player not in (0, 1):
raise Exception('start_player should be either 0 (player1 first) '
'or 1 (player2 first)')
self.board.init_board(start_player)
p1, p2 = self.board.players
player1.set_player_ind(p1)
player2.set_player_ind(p2)
players = {p1: player1, p2: player2}
if is_shown:
self.graphic(self.board, player1.player, player2.player)
while True:
current_player = self.board.get_current_player()
player_in_turn = players[current_player]
move = player_in_turn.get_action(self.board)
self.board.do_move(move)
if is_shown:
self.graphic(self.board, player1.player, player2.player)
end, winner = self.board.game_end()
if end:
if is_shown:
if winner != -1:
print("Game end. Winner is", players[winner])
else:
print("Game end. Tie")
return winner
def start_self_play(self, player, is_shown=0, temp=1e-3):
""" start a self-play game using a MCTS player, reuse the search tree,
and store the self-play data: (state, mcts_probs, z) for training
"""
self.board.init_board()
p1, p2 = self.board.players
states, mcts_probs, current_players = [], [], []
while True:
move, move_probs = player.get_action(self.board,
temp=temp,
return_prob=1)
# store the data
states.append(self.board.current_state())
mcts_probs.append(move_probs)
current_players.append(self.board.current_player)
# perform a move
self.board.do_move(move)
if is_shown:
self.graphic(self.board, p1, p2)
end, winner = self.board.game_end()
if end:
# winner from the perspective of the current player of each state
winners_z = np.zeros(len(current_players))
if winner != -1:
winners_z[np.array(current_players) == winner] = 1.0
winners_z[np.array(current_players) != winner] = -1.0
# reset MCTS root node
player.reset_player()
if is_shown:
if winner != -1:
print("Game end. Winner is player:", winner)
else:
print("Game end. Tie")
return winner, zip(states, mcts_probs, winners_z)