-
Notifications
You must be signed in to change notification settings - Fork 123
/
Copy pathmain.py
251 lines (214 loc) · 14.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
import argparse
from nerf.provider import NeRFDataset
from nerf.utils import *
from DPT.dpt.models import DPTDepthModel
import torchvision.transforms as T
from scipy.ndimage import median_filter
import DPT.util.io
# BLIP
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from PIL import Image
# torch.autograd.set_detect_anomaly(True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--text', default=None, help="text prompt")
parser.add_argument('--negative', default='', type=str, help="negative text prompt")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--final', action='store_true', help="final train mode")
parser.add_argument('--refine', action='store_true', help="refine mode")
parser.add_argument('--save_mesh', action='store_true', help="export an obj mesh with texture")
parser.add_argument('--eval_interval', type=int, default=10, help="evaluate on the valid set every interval epochs")
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--guidance', type=str, default='stable-diffusion', help='choose from [stable-diffusion, clip]')
parser.add_argument('--seed', type=int, default=0)
# parser.add_argument('--depth_model', type=str, default='dpt_hybrid', help='choose from [dpt_large, dpt_hybrid]')
parser.add_argument('--guidance_scale', type=float, default=10)
parser.add_argument('--need_back', action='store_true', help="use back text prompt")
parser.add_argument('--suppress_face', action='store_true', help="also use negative dir text prompt.")
parser.add_argument('--ref_path', default=None, type=str, help="use image as referance, only support alpha image")
### training options
parser.add_argument('--iters', type=int, default=10000, help="training iters")
parser.add_argument('--refine_iters', type=int, default=3000, help="refine iters")
parser.add_argument('--lr', type=float, default=1e-3, help="max learning rate")
parser.add_argument('--min_lr', type=float, default=1e-4, help="minimal learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=512, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=64, help="num steps sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=32, help="num steps up-sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)")
parser.add_argument('--albedo_iters', type=int, default=1000, help="training iters that only use albedo shading")
parser.add_argument('--uniform_sphere_rate', type=float, default=0.5, help="likelihood of sampling camera location uniformly on the sphere surface area")
parser.add_argument('--diff_iters', type=int, default=400, help="training iters that only use albedo shading")
parser.add_argument('--step_range', type=float, nargs='*', default=[0.2, 0.6])
# model options
parser.add_argument('--bg_radius', type=float, default=-1, help="if positive, use a background model at sphere(bg_radius)")
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied")
parser.add_argument('--blob_density', type=float, default=5, help="max (center) density for the gaussian density blob")
parser.add_argument('--blob_radius', type=float, default=0.1, help="control the radius for the gaussian density blob")
# network backbone
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--backbone', type=str, default='tcnn', choices=['grid', 'tcnn', 'sdf', 'vanilla', 'normal'], help="nerf backbone")
parser.add_argument('--optim', type=str, default='adan', choices=['adan', 'adam', 'adamw'], help="optimizer")
parser.add_argument('--sd_version', type=str, default='2.0', choices=['1.5', '2.0'], help="stable diffusion version")
parser.add_argument('--hf_key', type=str, default=None, help="hugging face Stable diffusion model key")
# rendering resolution in training, decrease this if CUDA OOM.
parser.add_argument('--w', type=int, default=128, help="render width for NeRF in training")
parser.add_argument('--h', type=int, default=128, help="render height for NeRF in training")
### dataset options
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)")
parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.1, help="minimum near distance for camera")
parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range")
parser.add_argument('--fov', type=float, default=20, help="training camera fovy range")
parser.add_argument('--fovy_range', type=float, nargs='*', default=[15, 25], help="training camera fovy range")
parser.add_argument('--theta_range', type=float, nargs='*', default=[70, 110], help="training camera phi range")
parser.add_argument('--phi_range', type=float, nargs='*', default=[0, 360], help="training camera phi range")
parser.add_argument('--lambda_entropy', type=float, default=1, help="loss scale for alpha entropy")
parser.add_argument('--lambda_opacity', type=float, default=1e-3, help="loss scale for alpha value")
parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation")
parser.add_argument('--lambda_smooth', type=float, default=1, help="loss scale for surface smoothness")
parser.add_argument('--lambda_img', type=float, default=1e3, help="loss scale for ref loss")
parser.add_argument('--lambda_depth', type=float, default=1, help="loss scale for depth loss")
parser.add_argument('--lambda_clip', type=float, default=1, help="loss scale for clip loss")
parser.add_argument('--W', type=int, default=800, help="GUI width")
parser.add_argument('--H', type=int, default=800, help="GUI height")
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]")
parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth")
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
parser.add_argument('--max_depth', type=float, default=10.0, help="farthest depth")
opt = parser.parse_args()
opt.cuda_ray = True
optDict = opt.__dict__
opt.workspace = os.path.join('results', opt.workspace)
if opt.workspace is not None:
os.makedirs(opt.workspace, exist_ok=True)
if opt.backbone == 'vanilla':
from nerf.network import NeRFNetwork
elif opt.backbone == 'tcnn':
from nerf.network_tcnn import NeRFNetwork
else:
raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!')
print(opt)
seed_everything(opt.seed)
# load depth network
net_w = net_h = 384
depth_model = DPTDepthModel(
path="dpt_weights/dpt_hybrid-midas-501f0c75.pt",
backbone="vitb_rn50_384",
non_negative=True,
enable_attention_hooks=False,
)
depth_transform = T.Compose(
[
T.Resize((384, 384)),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
depth_model.to(device)
if opt.optim == 'adan':
from optimizer import Adan
# Adan usually requires a larger LR
optimizer = lambda model: Adan(model.get_params(5 * opt.lr), eps=1e-8, weight_decay=2e-5, max_grad_norm=5.0, foreach=False)
else: # adam
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
if opt.backbone == 'vanilla':
warm_up_with_cosine_lr = lambda iter: iter / opt.warm_iters if iter <= opt.warm_iters \
else max(0.5 * ( math.cos((iter - opt.warm_iters) /(opt.iters - opt.warm_iters) * math.pi) + 1),
opt.min_lr / opt.lr)
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, warm_up_with_cosine_lr)
else:
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 1) # fixed
# scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
if opt.guidance == 'stable-diffusion':
from nerf.sd import StableDiffusion
guidance = StableDiffusion(device, opt.sd_version, opt.hf_key, step_range=opt.step_range)
elif opt.guidance == 'clip':
from nerf.clip import CLIP
guidance = CLIP(device)
else:
raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.')
ref_imgs = cv2.imread(opt.ref_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] o [H, W, 4]
image_pil = Image.open(opt.ref_path).convert("RGB")
# generated caption
if opt.text == None:
print("load blip2 for image caption...")
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
blip_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16).to("cuda")
inputs = processor(image_pil, return_tensors="pt").to("cuda", torch.float16)
out = blip_model.generate(**inputs)
caption = processor.batch_decode(out, skip_special_tokens=True)[0].strip()
caption = caption.replace("there is ", "")
caption = caption.replace("close up", "photo")
for d in ["black background", "white background"]:
if d in caption:
caption = caption.replace(d, "ground")
print("Caption: ", caption)
opt.text = caption
with open(os.path.join(opt.workspace, 'setting.txt'), 'w') as f:
f.writelines('------------------ start ------------------' + '\n')
for eachArg, value in optDict.items():
f.writelines(eachArg + ' : ' + str(value) + '\n')
f.writelines('------------------- end -------------------')
# only support alpha photo input.
imgs = cv2.cvtColor(ref_imgs, cv2.COLOR_BGRA2RGBA)
imgs = cv2.resize(imgs, (512, 512), interpolation=cv2.INTER_AREA)
ref_imgs = (torch.from_numpy(imgs)/255.).unsqueeze(0).permute(0, 3, 1, 2).to(device)
ori_imgs = ref_imgs[:, :3, :, :] * ref_imgs[:, 3:, :, :] + (1 - ref_imgs[:, 3:, :, :])
mask = imgs[:, :, 3:]
# mask[mask < 0.5 * 255] = 0
# mask[mask >= 0.5 * 255] = 1
kernel = np.ones(((5,5)), np.uint8) ##11
mask = cv2.erode(mask,kernel,iterations=1)
mask = (mask == 0)
mask = (torch.from_numpy(mask)).unsqueeze(0).unsqueeze(0).to(device)
depth_mask = mask
# depth estimation
with torch.no_grad():
depth_prediction = depth_model.forward(depth_transform(ori_imgs))
depth_prediction = torch.nn.functional.interpolate(
depth_prediction.unsqueeze(1),
size=512,
mode="bicubic",
align_corners=True,
) # [1, 1, 512, 512] [80~150]
DPT.util.io.write_depth_name(os.path.join(opt.workspace, opt.text.replace(" ", "_") + '_depth'), depth_prediction.squeeze().cpu().numpy(), bits=2)
disparity = imageio.imread(os.path.join(opt.workspace, opt.text.replace(" ", "_") + '_depth.png')) / 65535.
disparity = median_filter(disparity, size=5)
depth = 1. / np.maximum(disparity, 1e-2)
depth_prediction = torch.tensor(depth, device=device)
depth_mask = torch.tensor(depth_mask, device=device)
# normalize estimated depth
depth_prediction = depth_prediction * (~depth_mask) + torch.ones_like(depth_prediction) * (depth_mask)
depth_prediction = ((depth_prediction - 1.0) / (depth_prediction.max() - 1.0)) * 0.9 + 0.1
# save_image(ori_imgs, os.path.join(opt.workspace, opt.text.replace(" ", "_") + '_ref.png'))
model = NeRFNetwork(opt)
trainer = Trainer('df', opt, model, depth_model, guidance,
ref_imgs=ref_imgs, ref_depth=depth_prediction,
ref_mask=depth_mask, ori_imgs=ori_imgs,
device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=None, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True)
if opt.test:
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=33).dataloader()
trainer.test(test_loader, write_video=True)
if opt.save_mesh:
trainer.save_mesh(resolution=256)
else:
train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=100).dataloader()
valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=5).dataloader()
max_epoch = np.ceil(opt.iters / 100).astype(np.int32)
trainer.train(train_loader, valid_loader, max_epoch)
# also test
if opt.final:
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=64).dataloader()
trainer.test(test_loader, write_image=False, write_video=True)
if opt.save_mesh:
trainer.save_mesh(resolution=256)
if opt.refine:
mv_loader = NeRFDataset(opt, device=device, type='gen_mv', H=opt.H, W=opt.W, size=33).dataloader()
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=64).dataloader()
trainer.test(mv_loader, save_path=os.path.join(opt.workspace, 'mvimg'), write_image=True, write_video=False)
trainer.refine(os.path.join(opt.workspace, 'mvimg'), opt.refine_iters, test_loader)