-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_leverage.py
125 lines (91 loc) · 4.11 KB
/
train_leverage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import neptune.new as neptune
import numpy as np
import pandas as pd
import torch
import DQNTradingAgent.dqn_agent as dqn_agent
from arguments import argparser
from custom_hyperparameters import hyperparams
from leverage_trading_env import TradingEnv, action2position
from data_downloader import read_binance_futures_data
from config import API_TOKEN
# run = neptune.init(project='jeffrey/RL-trade',
# api_token=API_TOKEN,
# tags=['IQN'])
args = argparser()
torch.cuda.manual_seed_all(7)
device = torch.device("cuda:{}".format(args.device_num))
dqn_agent.set_device(device)
if not os.path.exists(args.save_location):
os.makedirs(args.save_location)
save_interval = 100
print_interval = 1
n_episodes = args.n_episodes
sample_len = 480
obs_data_len = 192
step_len = 1
risk_aversion_multiplier = 0.5 + args.risk_aversion_multiplier / 2
n_action_intervals = 5
init_budget = 10000000
torch.save(hyperparams, os.path.join(args.save_location, "hyperparams.pth"))
df = read_binance_futures_data(args.data_path, args.symbol, args.timeframe)
def main():
env = TradingEnv(custom_args=args, env_id='leverage_trading_env', obs_data_len=obs_data_len, step_len=step_len,
sample_len=sample_len,
df=df, fee=0.001, initial_budget=10000, n_action_intervals=n_action_intervals,
deal_col_name='close', sell_at_end=True,
feature_names=['open', 'high', 'low', 'close', 'volume', ])
agent = dqn_agent.Agent(action_size=2 * n_action_intervals + 1, risk_averse_ratio=args.risk_aversion_multiplier, obs_len=obs_data_len,
num_features=env.observation_space[1], **hyperparams)
# agent.qnetwork_local.load_state_dict(torch.load(args.load_file, map_location=device))
# agent.qnetwork_local.to(device)
beta = 0.4
beta_inc = (1 - beta) / 1000
agent.beta = beta
scores_list = []
for n_epi in range(1, n_episodes + 1):
state, info = env.reset()
score = 0.
actions = []
rewards = []
price_list = []
while True:
action = int(agent.act(state, eps=0.))
# if action > 5:
# action = 5
actions.append(action)
next_state, reward, done, info = env.step(action2position[action])
price_list.append(info.cur_price)
rewards.append(reward)
score += reward
# print(state[-1][3], f"r={reward:4f}, a={action}, asset={info.budget:.2f}, pos={info.position:.2f}, p.m={info.price_mean:.2f}")
if reward < 0:
reward *= risk_aversion_multiplier
if done:
action = 2 * n_action_intervals
agent.step(state, action, reward, next_state, done)
state = next_state
if done:
break
else:
agent.memory.reset_multisteps() # todo : multi-step learning
beta = min(1, beta + beta_inc)
agent.beta = beta
scores_list.append(score)
# run["train/reward"].log(score)
if n_epi % print_interval == 0 and n_epi != 0:
# print_str = f"# of episode: {n_epi:d}, avg score: {sum(scores_list[-print_interval:]) / print_interval:.4f}, \
# current_asset: {info.budget + info.cur_price * info.position}, Actions & next_price: {list(zip(actions, price_list))}"
print_str = f"# of episode: {n_epi:d}, avg score: {sum(scores_list[-print_interval:]) / print_interval:.4f}, asset={info.budget:.2f}, \
action={np.array(actions)}"
print(print_str)
with open(os.path.join(args.save_location, "output_log.txt"), mode='a') as f:
f.write(print_str + '\n')
if n_epi % save_interval == 0:
torch.save(agent.qnetwork_local.state_dict(),
os.path.join(args.save_location, f'IQN_leverage_{n_epi:d}.pth'))
torch.save(scores_list, os.path.join(args.save_location, 'scores.pth'))
del env
if __name__ == '__main__':
# run['parameters'] = vars(args)
main()