forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
machine_pwm.c
302 lines (265 loc) · 11.4 KB
/
machine_pwm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_pwm.c via MICROPY_PY_MACHINE_PWM_INCLUDEFILE.
#include "py/mphal.h"
#include "hardware/clocks.h"
#include "hardware/pwm.h"
/******************************************************************************/
// MicroPython bindings for machine.PWM
typedef struct _machine_pwm_obj_t {
mp_obj_base_t base;
uint8_t slice;
uint8_t channel;
uint8_t invert;
uint8_t duty_type;
mp_int_t duty;
} machine_pwm_obj_t;
enum {
VALUE_NOT_SET = -1,
DUTY_NOT_SET = 0,
DUTY_U16,
DUTY_NS
};
STATIC machine_pwm_obj_t machine_pwm_obj[] = {
{{&machine_pwm_type}, 0, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 0, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 1, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 1, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 2, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 2, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 3, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 3, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 4, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 4, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 5, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 5, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 6, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 6, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 7, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
{{&machine_pwm_type}, 7, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
};
STATIC bool defer_start;
STATIC bool slice_freq_set[8];
STATIC void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq);
STATIC void mp_machine_pwm_duty_set_u16(machine_pwm_obj_t *self, mp_int_t duty_u16);
STATIC void mp_machine_pwm_duty_set_ns(machine_pwm_obj_t *self, mp_int_t duty_ns);
STATIC void mp_machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "<PWM slice=%u channel=%u invert=%u>",
self->slice, self->channel, self->invert);
}
void machine_pwm_start(machine_pwm_obj_t *self) {
// Start the PWM if properly set.
if (defer_start == false && slice_freq_set[self->slice] == true && self->duty_type != DUTY_NOT_SET) {
if (self->channel == PWM_CHAN_A) {
pwm_set_output_polarity(self->slice, self->invert, (self + 1)->invert);
} else {
pwm_set_output_polarity(self->slice, (self - 1)->invert, self->invert);
}
pwm_set_enabled(self->slice, true);
}
}
STATIC void mp_machine_pwm_init_helper(machine_pwm_obj_t *self,
size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_freq, ARG_duty_u16, ARG_duty_ns, ARG_invert };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
{ MP_QSTR_duty_u16, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
{ MP_QSTR_duty_ns, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
};
// Parse the arguments.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args,
MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// defer starting PWM until all provided args are checked.
defer_start = true;
if (args[ARG_freq].u_int != VALUE_NOT_SET) {
mp_machine_pwm_freq_set(self, args[ARG_freq].u_int);
}
if (args[ARG_duty_u16].u_int != VALUE_NOT_SET) {
mp_machine_pwm_duty_set_u16(self, args[ARG_duty_u16].u_int);
}
if (args[ARG_duty_ns].u_int != VALUE_NOT_SET) {
mp_machine_pwm_duty_set_ns(self, args[ARG_duty_ns].u_int);
}
if (args[ARG_invert].u_int != VALUE_NOT_SET) {
self->invert = !!args[ARG_invert].u_int;
}
defer_start = false;
machine_pwm_start(self);
}
// PWM(pin [, args])
STATIC mp_obj_t mp_machine_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// Check number of arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// Get GPIO to connect to PWM.
uint32_t gpio = mp_hal_get_pin_obj(all_args[0]);
// Get static peripheral object.
uint slice = pwm_gpio_to_slice_num(gpio);
uint8_t channel = pwm_gpio_to_channel(gpio);
machine_pwm_obj_t *self = &machine_pwm_obj[slice * 2 + channel];
self->invert = 0;
self->duty_type = DUTY_NOT_SET;
// Process the remaining parameters.
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);
mp_machine_pwm_init_helper(self, n_args - 1, all_args + 1, &kw_args);
// Select PWM function for given GPIO.
gpio_set_function(gpio, GPIO_FUNC_PWM);
return MP_OBJ_FROM_PTR(self);
}
// Stop all active slices.
void machine_pwm_deinit_all(void) {
for (int i = 0; i < 8; i++) {
slice_freq_set[i] = false;
pwm_set_enabled(machine_pwm_obj[i].slice, false);
}
}
STATIC void mp_machine_pwm_deinit(machine_pwm_obj_t *self) {
pwm_set_enabled(self->slice, false);
}
// Returns: floor((16*F + offset) / div16)
// Avoids overflow in the numerator that would occur if
// 16*F + offset > 2**32
// F + offset/16 > 2**28 = 268435456 (approximately, due to flooring)
uint32_t get_slice_hz(uint32_t offset, uint32_t div16) {
uint32_t source_hz = clock_get_hz(clk_sys);
if (source_hz + offset / 16 > 268000000) {
return (16 * (uint64_t)source_hz + offset) / div16;
} else {
return (16 * source_hz + offset) / div16;
}
}
// Returns 16*F / denom, rounded.
uint32_t get_slice_hz_round(uint32_t div16) {
return get_slice_hz(div16 / 2, div16);
}
// Returns ceil(16*F / denom).
uint32_t get_slice_hz_ceil(uint32_t div16) {
return get_slice_hz(div16 - 1, div16);
}
STATIC mp_obj_t mp_machine_pwm_freq_get(machine_pwm_obj_t *self) {
if (slice_freq_set[self->slice] == true) {
uint32_t div16 = pwm_hw->slice[self->slice].div;
uint32_t top = pwm_hw->slice[self->slice].top;
uint32_t pwm_freq = get_slice_hz_round(div16 * (top + 1));
return MP_OBJ_NEW_SMALL_INT(pwm_freq);
} else {
return MP_OBJ_NEW_SMALL_INT(0);
}
}
STATIC void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq) {
// Set the frequency, making "top" as large as possible for maximum resolution.
// Maximum "top" is set at 65534 to be able to achieve 100% duty with 65535.
#define TOP_MAX 65534
uint32_t source_hz = clock_get_hz(clk_sys);
uint32_t div16;
uint32_t top;
if ((source_hz + freq / 2) / freq < TOP_MAX) {
// If possible (based on the formula for TOP below), use a DIV of 1.
// This also prevents overflow in the DIV calculation.
div16 = 16;
// Same as get_slice_hz_round() below but canceling the 16s
// to avoid overflow for high freq.
top = (source_hz + freq / 2) / freq - 1;
} else {
// Otherwise, choose the smallest possible DIV for maximum
// duty cycle resolution.
// Constraint: 16*F/(div16*freq) < TOP_MAX
// So:
div16 = get_slice_hz_ceil(TOP_MAX * freq);
// Set TOP as accurately as possible using rounding.
top = get_slice_hz_round(div16 * freq) - 1;
}
if (div16 < 16) {
mp_raise_ValueError(MP_ERROR_TEXT("freq too large"));
} else if (div16 >= 256 * 16) {
mp_raise_ValueError(MP_ERROR_TEXT("freq too small"));
}
pwm_hw->slice[self->slice].div = div16;
pwm_hw->slice[self->slice].top = top;
slice_freq_set[self->slice] = true;
if (self->duty_type == DUTY_U16) {
mp_machine_pwm_duty_set_u16(self, self->duty);
} else if (self->duty_type == DUTY_NS) {
mp_machine_pwm_duty_set_ns(self, self->duty);
}
machine_pwm_obj_t *other = self->channel == PWM_CHAN_A ? self + 1 : self - 1;
if (other->duty_type == DUTY_U16) {
mp_machine_pwm_duty_set_u16(other, other->duty);
} else if (other->duty_type == DUTY_NS) {
mp_machine_pwm_duty_set_ns(other, other->duty);
}
}
STATIC mp_obj_t mp_machine_pwm_duty_get_u16(machine_pwm_obj_t *self) {
if (self->duty_type != DUTY_NOT_SET && slice_freq_set[self->slice] == true) {
uint32_t top = pwm_hw->slice[self->slice].top;
uint32_t cc = pwm_hw->slice[self->slice].cc;
cc = (cc >> (self->channel ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB)) & 0xffff;
// Use rounding (instead of flooring) here to give as accurate an
// estimate as possible.
return MP_OBJ_NEW_SMALL_INT((cc * 65535 + (top + 1) / 2) / (top + 1));
} else {
return MP_OBJ_NEW_SMALL_INT(0);
}
}
STATIC void mp_machine_pwm_duty_set_u16(machine_pwm_obj_t *self, mp_int_t duty_u16) {
uint32_t top = pwm_hw->slice[self->slice].top;
// Limit duty_u16 to 65535
// Use rounding here to set it as accurately as possible.
if (duty_u16 > 65535) {
duty_u16 = 65535;
}
uint32_t cc = (duty_u16 * (top + 1) + 65535 / 2) / 65535;
pwm_set_chan_level(self->slice, self->channel, cc);
self->duty = duty_u16;
self->duty_type = DUTY_U16;
machine_pwm_start(self);
}
STATIC mp_obj_t mp_machine_pwm_duty_get_ns(machine_pwm_obj_t *self) {
if (self->duty_type != DUTY_NOT_SET && slice_freq_set[self->slice] == true) {
uint32_t slice_hz = get_slice_hz_round(pwm_hw->slice[self->slice].div);
uint32_t cc = pwm_hw->slice[self->slice].cc;
cc = (cc >> (self->channel ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB)) & 0xffff;
return MP_OBJ_NEW_SMALL_INT(((uint64_t)cc * 1000000000ULL + slice_hz / 2) / slice_hz);
} else {
return MP_OBJ_NEW_SMALL_INT(0);
}
}
STATIC void mp_machine_pwm_duty_set_ns(machine_pwm_obj_t *self, mp_int_t duty_ns) {
uint32_t slice_hz = get_slice_hz_round(pwm_hw->slice[self->slice].div);
uint32_t cc = ((uint64_t)duty_ns * slice_hz + 500000000ULL) / 1000000000ULL;
uint32_t top = pwm_hw->slice[self->slice].top;
if (cc > (top + 1)) {
cc = top + 1;
}
pwm_set_chan_level(self->slice, self->channel, cc);
self->duty = duty_ns;
self->duty_type = DUTY_NS;
machine_pwm_start(self);
}