-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathprepare_data.py
43 lines (31 loc) · 1.44 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import pandas as pd
import pickle
import warnings
from pathlib import Path
from utils.feature_tools import FeatureTools
from sklearn.preprocessing import MinMaxScaler, RobustScaler
import pdb
warnings.filterwarnings("ignore")
if __name__ == '__main__':
PATH = Path('data/')
train_fname = 'adult.data'
test_fname = 'adult.test'
df_tr = pd.read_csv(PATH/train_fname)
df_te = pd.read_csv(PATH/test_fname)
adult_df = pd.concat([df_tr, df_te]).sample(frac=1)
adult_df.drop('fnlwgt', axis=1, inplace=True)
adult_df['target'] = (adult_df['income_bracket'].apply(lambda x: '>50K' in x)).astype(int)
adult_df.drop('income_bracket', axis=1, inplace=True)
categorical_cols = list(adult_df.select_dtypes(include=['object']).columns)
scale_cols = [c for c in adult_df.columns if c not in categorical_cols+['target']]
crossed_cols = (['education', 'occupation'], ['native_country', 'occupation'])
preprocessor = FeatureTools()
adult_databunch = preprocessor(adult_df, target_col='target', scale_cols=scale_cols,
scaler=MinMaxScaler(), categorical_cols=categorical_cols, x_cols=crossed_cols)
pickle.dump(adult_databunch, open(PATH/'adult_databunch.p', "wb"))
credit_df = pd.read_csv(PATH/'creditcard.csv.zip')
scale_cols = ['Time', 'Amount']
preprocessor = FeatureTools()
credit_databunch = preprocessor(credit_df, target_col='Class', scale_cols=scale_cols,
scaler=MinMaxScaler())
pickle.dump(credit_databunch, open(PATH/'credit_databunch.p', "wb"))