Skip to content

Latest commit

 

History

History
1480 lines (1207 loc) · 66.9 KB

0_beacon-chain.md

File metadata and controls

1480 lines (1207 loc) · 66.9 KB

Ethereum 2.0 Phase 0 -- The Beacon Chain

NOTICE: This document is a work-in-progress for researchers and implementers. It reflects recent spec changes and takes precedence over the Python proof-of-concept implementation [python-poc].

Table of contents

Introduction

This document represents the specification for Phase 0 of Ethereum 2.0 -- The Beacon Chain.

At the core of Ethereum 2.0 is a system chain called the "beacon chain". The beacon chain stores and manages the registry of validators. In the initial deployment phases of Ethereum 2.0 the only mechanism to become a validator is to make a one-way ETH transaction to a deposit contract on Ethereum 1.0. Activation as a validator happens when deposit transaction receipts are processed by the beacon chain, the activation balance is reached, and after a queuing process. Exit is either voluntary or done forcibly as a penalty for misbehavior.

The primary source of load on the beacon chain is "attestations". Attestations are availability votes for a shard block, and simultaneously proof of stake votes for a beacon chain block. A sufficient number of attestations for the same shard block create a "crosslink", confirming the shard segment up to that shard block into the beacon chain. Crosslinks also serve as infrastructure for asynchronous cross-shard communication.

Notation

Unless otherwise indicated, code appearing in this style is to be interpreted as an algorithm defined in Python. Implementations may implement such algorithms using any code and programming language desired as long as the behavior is identical to that of the algorithm provided.

Terminology

  • Validator - a participant in the Casper/sharding consensus system. You can become one by depositing 32 ETH into the Casper mechanism.
  • Active validator - a validator currently participating in the protocol which the Casper mechanism looks to produce and attest to blocks, crosslinks and other consensus objects.
  • Committee - a (pseudo-) randomly sampled subset of active validators. When a committee is referred to collectively, as in "this committee attests to X", this is assumed to mean "some subset of that committee that contains enough validators that the protocol recognizes it as representing the committee".
  • Proposer - the validator that creates a beacon chain block
  • Attester - a validator that is part of a committee that needs to sign off on a beacon chain block while simultaneously creating a link (crosslink) to a recent shard block on a particular shard chain.
  • Beacon chain - the central PoS chain that is the base of the sharding system.
  • Shard chain - one of the chains on which user transactions take place and account data is stored.
  • Crosslink - a set of signatures from a committee attesting to a block in a shard chain, which can be included into the beacon chain. Crosslinks are the main means by which the beacon chain "learns about" the updated state of shard chains.
  • Slot - a period of SLOT_DURATION seconds, during which one proposer has the ability to create a beacon chain block and some attesters have the ability to make attestations
  • Epoch - an aligned span of slots during which all validators get exactly one chance to make an attestation
  • Finalized, justified - see Casper FFG finalization here: https://arxiv.org/abs/1710.09437
  • Withdrawal period - the number of slots between a validator exit and the validator balance being withdrawable
  • Genesis time - the Unix time of the genesis beacon chain block at slot 0

Constants

Name Value Unit
SHARD_COUNT 2**10 (= 1,024) shards
TARGET_COMMITTEE_SIZE 2**8 (= 256) validators
MAX_ATTESTATIONS_PER_BLOCK 2**7 (= 128) attestations
MAX_DEPOSIT 2**5 (= 32) ETH
MIN_BALANCE 2**4 (= 16) ETH
POW_CONTRACT_MERKLE_TREE_DEPTH 2**5 (= 32) -
INITIAL_FORK_VERSION 0 -
INITIAL_SLOT_NUMBER 0 -
DEPOSIT_CONTRACT_ADDRESS TBD -
GWEI_PER_ETH 10**9 Gwei/ETH
ZERO_HASH bytes([0] * 32) -
BEACON_CHAIN_SHARD_NUMBER 2**64 - 1 -

Time constants

Name Value Unit Duration
SLOT_DURATION 6 seconds 6 seconds
MIN_ATTESTATION_INCLUSION_DELAY 2**2 (= 4) slots 24 seconds
EPOCH_LENGTH 2**6 (= 64) slots 6.4 minutes
MIN_VALIDATOR_REGISTRY_CHANGE_INTERVAL 2**8 (= 256) slots 25.6 minutes
POW_RECEIPT_ROOT_VOTING_PERIOD 2**10 (= 1,024) slots ~1.7 hours
SHARD_PERSISTENT_COMMITTEE_CHANGE_PERIOD 2**17 (= 131,072) slots ~9 days
SQRT_E_DROP_TIME 2**17 (= 131,072) slots ~9 days
COLLECTIVE_PENALTY_CALCULATION_PERIOD 2**20 (= 1,048,576) slots ~73 days
DELETION_PERIOD 2**22 (= 16,777,216) slots ~290 days

Quotients

Name Value
BASE_REWARD_QUOTIENT 2**11 (= 2,048)
WHISTLEBLOWER_REWARD_QUOTIENT 2**9 (= 512)
INCLUDER_REWARD_QUOTIENT 2**3 (= 8)
MAX_CHURN_QUOTIENT 2**5 (= 32)

Validator status codes

Name Value
PENDING_ACTIVATION 0
ACTIVE 1
EXITED_WITHOUT_PENALTY 2
EXITED_WITH_PENALTY 3

Special record types

Name Value Maximum count
VOLUNTARY_EXIT 0 16
CASPER_SLASHING 1 16
PROPOSER_SLASHING 2 16
DEPOSIT_PROOF 3 16

Validator registry delta flags

Name Value
ACTIVATION 0
EXIT 1

Domains for BLS signatures

Name Value
DOMAIN_DEPOSIT 0
DOMAIN_ATTESTATION 1
DOMAIN_PROPOSAL 2
DOMAIN_EXIT 3

Notes

  • See a recommended min committee size of 111 here; the shuffling algorithm will generally ensure the committee size is at least half the target.
  • The SQRT_E_DROP_TIME constant is the amount of time it takes for the inactivity leak to cut deposits of non-participating validators by ~39.4%.
  • The BASE_REWARD_QUOTIENT constant dictates the per-epoch interest rate assuming all validators are participating, assuming total deposits of 1 ETH. It corresponds to ~2.57% annual interest assuming 10 million participating ETH.
  • At most 1/MAX_CHURN_QUOTIENT of the validators can change during each validator registry change.

Ethereum 1.0 chain deposit contract

The initial deployment phases of Ethereum 2.0 are implemented without consensus changes to Ethereum 1.0. A deposit contract is added to Ethereum 1.0 to deposit ETH. This contract has a deposit function which takes as arguments pubkey, withdrawal_credentials, randao_commitment as defined in a ValidatorRecord below. A BLS proof_of_possession of types bytes is given as a final argument.

The deposit contract emits a log with the various arguments for consumption by the beacon chain. It does little validation, pushing the deposit logic to the beacon chain. In particular, the proof of possession (based on the BLS12-381 curve) is not verified by the deposit contract.

Contract code in Vyper

The beacon chain is initialized when a condition is met inside the deposit contract on the existing Ethereum 1.0 chain. This contract's code in Vyper is as follows:

MIN_DEPOSIT: constant(uint256) = 1  # ETH
MAX_DEPOSIT: constant(uint256) = 32  # ETH
GWEI_PER_ETH: constant(uint256) = 1000000000  # 10**9
CHAIN_START_FULL_DEPOSIT_THRESHOLD: constant(uint256) = 16384  # 2**14
POW_CONTRACT_MERKLE_TREE_DEPTH: constant(uint256) = 32
SECONDS_PER_DAY: constant(uint256) = 86400

HashChainValue: event({previous_receipt_root: bytes32, data: bytes[2064], full_deposit_count: uint256})
ChainStart: event({receipt_root: bytes32, time: bytes[8]})

receipt_tree: bytes32[uint256]
full_deposit_count: uint256

@payable
@public
def deposit(deposit_parameters: bytes[2048]):
    index: uint256 = self.full_deposit_count + 2**POW_CONTRACT_MERKLE_TREE_DEPTH
    msg_gwei_bytes8: bytes[8] = slice(concat("", convert(msg.value / GWEI_PER_ETH, bytes32)), start=24, len=8)
    timestamp_bytes8: bytes[8] = slice(concat("", convert(block.timestamp, bytes32)), start=24, len=8)
    deposit_data: bytes[2064] = concat(msg_gwei_bytes8, timestamp_bytes8, deposit_parameters)

    log.HashChainValue(self.receipt_tree[1], deposit_data, self.full_deposit_count)

    self.receipt_tree[index] = sha3(deposit_data)
    for i in range(32):  # POW_CONTRACT_MERKLE_TREE_DEPTH (range of constant var not yet supported)
        index /= 2
        self.receipt_tree[index] = sha3(concat(self.receipt_tree[index * 2], self.receipt_tree[index * 2 + 1]))

    assert msg.value >= as_wei_value(MIN_DEPOSIT, "ether")
    assert msg.value <= as_wei_value(MAX_DEPOSIT, "ether")
    if msg.value == as_wei_value(MAX_DEPOSIT, "ether"):
        self.full_deposit_count += 1
    if self.full_deposit_count == CHAIN_START_FULL_DEPOSIT_THRESHOLD:
        timestamp_day_boundary: uint256 = as_unitless_number(block.timestamp) - as_unitless_number(block.timestamp) % SECONDS_PER_DAY + SECONDS_PER_DAY
        timestamp_day_boundary_bytes8: bytes[8] = slice(concat("", convert(timestamp_day_boundary, bytes32)), start=24, len=8)
        log.ChainStart(self.receipt_tree[1], timestamp_day_boundary_bytes8)

@public
@constant
def get_receipt_root() -> bytes32:
    return self.receipt_tree[1]

The contract is at address DEPOSIT_CONTRACT_ADDRESS. When a user wishes to become a validator by moving their ETH from Ethereum 1.0 to the Ethereum 2.0 chain, they should call the deposit function, sending up to MAX_DEPOSIT ETH and providing as deposit_parameters a SimpleSerialize'd DepositParametersRecord object (defined in "Data structures" below). If the user wishes to deposit more than MAX_DEPOSIT ETH, they would need to make multiple calls.

When the contract publishes a ChainStart log, this initializes the chain, calling on_startup with:

  • initial_validator_entries equal to the list of data records published as HashChainValue logs so far, in the order in which they were published (oldest to newest).
  • genesis_time equal to the time value published in the log
  • processed_pow_receipt_root equal to the receipt_root value published in the log

Data structures

Deposits

DepositParametersRecord

{
    # BLS pubkey
    'pubkey': 'int384',
    # BLS proof of possession (a BLS signature)
    'proof_of_possession': ['int384'],
    # Withdrawal credentials (TODO: define the format)
    'withdrawal_credentials': 'hash32',
    # The initial RANDAO commitment
    'randao_commitment': 'hash32',
}

Beacon chain blocks

BeaconBlock

{
    # Slot number
    'slot': 'uint64',
    # Proposer RANDAO reveal
    'randao_reveal': 'hash32',
    # Candidate PoW receipt root
    'candidate_pow_receipt_root': 'hash32',
    # Skip list of ancestor beacon block hashes
    # i'th item is the most recent ancestor whose slot is a multiple of 2**i for i = 0, ..., 31
    'ancestor_hashes': ['hash32'],
    # State root
    'state_root': 'hash32',
    # Attestations
    'attestations': [AttestationRecord],
    # Specials (e.g. exits, penalties)
    'specials': [SpecialRecord],
    # Proposer signature
    'proposer_signature': ['uint384'],
}

AttestationRecord

{
    # Attestation data
    'data': AttestationData,
    # Attester participation bitfield
    'participation_bitfield': 'bytes',
    # Proof of custody bitfield
    'custody_bitfield': 'bytes',
    # BLS aggregate signature
    'aggregate_sig': ['uint384'],
}

AttestationData

{
    # Slot number
    'slot': 'uint64',
    # Shard number
    'shard': 'uint64',
    # Hash of the signed beacon block
    'beacon_block_hash': 'hash32',
    # Hash of the ancestor at the epoch boundary
    'epoch_boundary_hash': 'hash32',
    # Shard block hash being attested to
    'shard_block_hash': 'hash32',
    # Last crosslink hash
    'latest_crosslink_hash': 'hash32',
    # Slot of the last justified beacon block
    'justified_slot': 'uint64',
    # Hash of the last justified beacon block
    'justified_block_hash': 'hash32',
}

ProposalSignedData

{
    # Slot number
    'slot': 'uint64',
    # Shard number (`BEACON_CHAIN_SHARD_NUMBER` for beacon chain)
    'shard': 'uint64',
    # Block hash
    'block_hash': 'hash32',
}

A SpecialRecord object has the following fields:

{
    # Kind
    'kind': 'uint64',
    # Data
    'data': 'bytes',
}

Beacon chain state

BeaconState

{
    # Validator registry
    'validator_registry': [ValidatorRecord],
    'validator_registry_latest_change_slot': 'uint64',
    'validator_registry_exit_count': 'uint64',
    'validator_registry_delta_chain_tip': 'hash32',  # For light clients to easily track delta

    # Randomness and committees
    'randao_mix': 'hash32',
    'next_seed': 'hash32',
    'shard_and_committee_for_slots': [[ShardAndCommittee]],
    'persistent_committees': [['uint24']],
    'persistent_committee_reassignments': [ShardReassignmentRecord],

    # Finality
    'previous_justified_slot': 'uint64',
    'justified_slot': 'uint64',
    'justified_slot_bitfield': 'uint64',
    'finalized_slot': 'uint64',

    # Recent state
    'latest_crosslinks': [CrosslinkRecord],
    'latest_state_recalculation_slot': 'uint64',
    'latest_block_hashes': ['hash32'],  # Needed to process attestations, older to newer
    'latest_penalized_exit_balances': ['uint64'],  # Balances penalized in the current withdrawal period
    'latest_attestations': [PendingAttestationRecord],

    # PoW receipt root
    'processed_pow_receipt_root': 'hash32',
    'candidate_pow_receipt_roots': [CandidatePoWReceiptRootRecord],

    # Misc
    'genesis_time': 'uint64',
    'fork_data': ForkData,  # For versioning hard forks
}

ValidatorRecord

{
    # BLS public key
    'pubkey': 'uint384',
    # Withdrawal credentials
    'withdrawal_credentials': 'hash32',
    # RANDAO commitment
    'randao_commitment': 'hash32',
    # Slots the proposer has skipped (ie. layers of RANDAO expected)
    'randao_skips': 'uint64',
    # Balance in Gwei
    'balance': 'uint64',
    # Status code
    'status': 'uint64',
    # Slot when validator last changed status (or 0)
    'latest_status_change_slot': 'uint64',
    # Exit counter when validator exited (or 0)
    'exit_count': 'uint64',
}

CrosslinkRecord

{
    # Slot number
    'slot': 'uint64',
    # Shard chain block hash
    'shard_block_hash': 'hash32',
}

A ShardAndCommittee object has the following fields:

{
    # Shard number
    'shard': 'uint64',
    # Validator indices
    'committee': ['uint24'],
    # Total validator count (for proofs of custody)
    'total_validator_count': 'uint64',
}

A ShardReassignmentRecord object has the following fields:

{
    # Which validator to reassign
    'validator_index': 'uint24',
    # To which shard
    'shard': 'uint64',
    # When
    'slot': 'uint64',
}

CandidatePoWReceiptRootRecord

{
    # Candidate PoW receipt root
    'candidate_pow_receipt_root': 'hash32',
    # Vote count
    'votes': 'uint64',
}

PendingAttestationRecord

{
    # Signed data
    'data': AttestationData,
    # Attester participation bitfield
    'participation_bitfield': 'bytes',
    # Proof of custody bitfield
    'custody_bitfield': 'bytes',
    # Slot in which it was included
    'slot_included': 'uint64',
}

ForkData

{
    # Previous fork version
    'pre_fork_version': 'uint64',
    # Post fork version
    'post_fork_version': 'uint64',
    # Fork slot number
    'fork_slot': 'uint64',

Beacon chain processing

The beacon chain is the system chain for Ethereum 2.0. The main responsibilities of the beacon chain are:

  • Store and maintain the registry of validators
  • Process crosslinks (see above)
  • Process its own block-by-block consensus, as well as the finality gadget

Processing the beacon chain is fundamentally similar to processing the Ethereum 1.0 chain in many respects. Clients download and process blocks, and maintain a view of what is the current "canonical chain", terminating at the current "head". However, because of the beacon chain's relationship with Ethereum 1.0, and because it is a proof-of-stake chain, there are differences.

For a beacon chain block, block, to be processed by a node, the following conditions must be met:

  • The parent block, block.ancestor_hashes[0], has been processed and accepted.
  • The Ethereum 1.0 block pointed to by the state.processed_pow_receipt_root has been processed and accepted.
  • The node's local clock time is greater than or equal to state.genesis_time + block.slot * SLOT_DURATION.

If these conditions are not met, the client should delay processing the beacon block until the conditions are all satisfied.

Beacon block production is significantly different because of the proof of stake mechanism. A client simply checks what it thinks is the canonical chain when it should create a block, and looks up what its slot number is; when the slot arrives, it either proposes or attests to a block as required. Note that this requires each node to have a clock that is roughly (ie. within SLOT_DURATION seconds) synchronized with the other nodes.

Beacon chain fork choice rule

The beacon chain fork choice rule is a hybrid that combines justification and finality with Latest Message Driven (LMD) Greediest Heaviest Observed SubTree (GHOST). At any point in time a validator v subjectively calculates the beacon chain head as follows.

  • Let store be the set of attestations and blocks that the validator v has observed and verified (in particular, block ancestors must be recursively verified). Attestations not part of any chain are still included in store.
  • Let finalized_head be the finalized block with the highest slot number. (A block B is finalized if there is a descendant of B in store the processing of which sets B as finalized.)
  • Let justified_head be the descendant of finalized_head with the highest slot number that has been justified for at least EPOCH_LENGTH slots. (A block B is justified if there is a descendant of B in store the processing of which sets B as justified.) If no such descendant exists set justified_head to finalized_head.
  • Let get_ancestor(store, block, slot) be the ancestor of block with slot number slot. The get_ancestor function can be defined recursively as def get_ancestor(store, block, slot): return block if block.slot == slot else get_ancestor(store, store.get_parent(block), slot).
  • Let get_latest_attestation(store, validator) be the attestation with the highest slot number in store from validator. If several such attestations exist, use the one the validator v observed first.
  • Let get_latest_attestation_target(store, validator) be the target block in the attestation get_latest_attestation(store, validator).
  • The head is lmd_ghost(store, justified_head) where the function lmd_ghost is defined below. Note that the implementation below is suboptimal; there are implementations that compute the head in time logarithmic in slot count.
def lmd_ghost(store, start):
    validators = start.state.validator_registry
    active_validators = [validators[i] for i in
                         get_active_validator_indices(validators, start.slot)]
    attestation_targets = [get_latest_attestation_target(store, validator)
                           for validator in active_validators]
    def get_vote_count(block):
        return len([target for target in attestation_targets if
                    get_ancestor(store, target, block.slot) == block])

    head = start
    while 1:
        children = get_children(head)
        if len(children) == 0:
            return head        
        head = max(children, key=get_vote_count)

Beacon chain state transition function

We now define the state transition function. At a high level the state transition is made up of two parts:

  1. The per-block processing, which happens every block, and only affects a few parts of the state.
  2. The inter-epoch state recalculation, which happens only if block.slot >= state.latest_state_recalculation_slot + EPOCH_LENGTH, and affects the entire state.

The inter-epoch state recalculation generally focuses on changes to the validator registry, including adjusting balances and adding and removing validators, as well as processing crosslinks and managing block justification/finalization, while the per-block processing generally focuses on verifying aggregate signatures and saving temporary records relating to the per-block activity in the BeaconState.

Helper functions

Note: The definitions below are for specification purposes and are not necessarily optimal implementations.

get_active_validator_indices

def get_active_validator_indices(validators: [ValidatorRecords]) -> List[int]:
    """
    Gets indices of active validators from ``validators``.
    """
    return [i for i, v in enumerate(validators) if v.status in [ACTIVE, PENDING_EXIT]]

shuffle

def shuffle(values: List[Any], seed: Hash32) -> List[Any]:
    """
    Returns the shuffled ``values`` with ``seed`` as entropy.
    """
    values_count = len(values)

    # Entropy is consumed from the seed in 3-byte (24 bit) chunks.
    rand_bytes = 3
    # The highest possible result of the RNG.
    rand_max = 2 ** (rand_bytes * 8) - 1

    # The range of the RNG places an upper-bound on the size of the list that
    # may be shuffled. It is a logic error to supply an oversized list.
    assert values_count < rand_max

    output = [x for x in values]
    source = seed
    index = 0
    while index < values_count - 1:
        # Re-hash the `source` to obtain a new pattern of bytes.
        source = hash(source)
        # Iterate through the `source` bytes in 3-byte chunks.
        for position in range(0, 32 - (32 % rand_bytes), rand_bytes):
            # Determine the number of indices remaining in `values` and exit
            # once the last index is reached.
            remaining = values_count - index
            if remaining == 1:
                break

            # Read 3-bytes of `source` as a 24-bit big-endian integer.
            sample_from_source = int.from_bytes(source[position:position + rand_bytes], 'big')

            # Sample values greater than or equal to `sample_max` will cause
            # modulo bias when mapped into the `remaining` range.
            sample_max = rand_max - rand_max % remaining

            # Perform a swap if the consumed entropy will not cause modulo bias.
            if sample_from_source < sample_max:
                # Select a replacement index for the current index.
                replacement_position = (sample_from_source % remaining) + index
                # Swap the current index with the replacement index.
                output[index], output[replacement_position] = output[replacement_position], output[index]
                index += 1
            else:
                # The sample causes modulo bias. A new sample should be read.
                pass

    return output

split

def split(values: List[Any], split_count: int) -> List[Any]:
    """
    Splits ``values`` into ``split_count`` pieces.
    """
    list_length = len(values)
    return [
        values[(list_length * i // split_count): (list_length * (i + 1) // split_count)]
        for i in range(split_count)
    ]

clamp

def clamp(minval: int, maxval: int, x: int) -> int:
    """
    Clamps ``x`` between ``minval`` and ``maxval``.
    """
    if x <= minval:
        return minval
    elif x >= maxval:
        return maxval
    else:
        return x

get_new_shuffling

def get_new_shuffling(seed: Hash32,
                      validators: List[ValidatorRecord],
                      crosslinking_start_shard: int) -> List[List[ShardAndCommittee]]:
    """
    Shuffles ``validators`` into shard committees using ``seed`` as entropy.
    """
    active_validator_indices = get_active_validator_indices(validators)

    committees_per_slot = clamp(
        1,
        SHARD_COUNT // EPOCH_LENGTH,
        len(active_validator_indices) // EPOCH_LENGTH // TARGET_COMMITTEE_SIZE,
    )

    # Shuffle with seed
    shuffled_active_validator_indices = shuffle(active_validator_indices, seed)

    # Split the shuffled list into epoch_length pieces
    validators_per_slot = split(shuffled_active_validator_indices, EPOCH_LENGTH)

    output = []
    for slot, slot_indices in enumerate(validators_per_slot):
        # Split the shuffled list into committees_per_slot pieces
        shard_indices = split(slot_indices, committees_per_slot)

        shard_id_start = crosslinking_start_shard + slot * committees_per_slot

        shards_and_committees_for_slot = [
            ShardAndCommittee(
                shard=(shard_id_start + shard_position) % SHARD_COUNT,
                committee=indices,
                total_validator_count=len(active_validator_indices),
            )
            for shard_position, indices in enumerate(shard_indices)
        ]
        output.append(shards_and_committees_for_slot)

    return output

Here's a diagram of what is going on:

get_shard_and_committees_for_slot

def get_shard_and_committees_for_slot(state: BeaconState,
                                      slot: int) -> List[ShardAndCommittee]:
    """
    Returns the ``ShardAndCommittee`` for the ``slot``.
    """
    earliest_slot_in_array = state.latest_state_recalculation_slot - EPOCH_LENGTH
    assert earliest_slot_in_array <= slot < earliest_slot_in_array + EPOCH_LENGTH * 2
    return state.shard_and_committee_for_slots[slot - earliest_slot_in_array]

get_block_hash

def get_block_hash(state: BeaconState,
                   current_block: BeaconBlock,
                   slot: int) -> Hash32:
    """
    Returns the block hash at a recent ``slot``.
    """
    earliest_slot_in_array = current_block.slot - len(state.latest_block_hashes)
    assert earliest_slot_in_array <= slot < current_block.slot
    return state.latest_block_hashes[slot - earliest_slot_in_array]

get_block_hash(_, _, s) should always return the block hash in the beacon chain at slot s, and get_shard_and_committees_for_slot(_, s) should not change unless the validator registry changes.

get_beacon_proposer_index

def get_beacon_proposer_index(state:BeaconState, slot: int) -> int:
    """
    Returns the beacon proposer index for the ``slot``.
    """
    first_committee = get_shard_and_committees_for_slot(state, slot)[0].committee
    return first_committee[slot % len(first_committee)]

get_attestation_participants

def get_attestation_participants(state: State,
                                 attestation_data: AttestationData,
                                 participation_bitfield: bytes) -> List[int]:
    """
    Returns the participant indices at for the ``attestation_data`` and ``participation_bitfield``.
    """
    sncs_for_slot = get_shard_and_committees_for_slot(state, attestation_data.slot)
    snc = [x for x in sncs_for_slot if x.shard == attestation_data.shard][0]
    assert len(participation_bitfield) == ceil_div8(len(snc.committee))
    participants = []
    for i, validator_index in enumerate(snc.committee):
        bit = (participation_bitfield[i//8] >> (7 - (i % 8))) % 2
        if bit == 1:
            participants.append(validator_index)
    return participants

bytes1, bytes2, ...

bytes1(x): return x.to_bytes(1, 'big'), bytes2(x): return x.to_bytes(2, 'big'), and so on for all integers, particularly 1, 2, 3, 4, 8, 32.

get_effective_balance

def get_effective_balance(validator: ValidatorRecord) -> int:
   """
   Returns the effective balance (also known as "balance at stake") for the ``validator``.
   """
   return min(validator.balance, MAX_DEPOSIT)

get_new_validator_registry_delta_chain_tip

def get_new_validator_registry_delta_chain_tip(current_validator_registry_delta_chain_tip: Hash32,
                                               index: int,
                                               pubkey: int,
                                               flag: int) -> Hash32:
    """
    Compute the next hash in the validator registry delta hash chain.
    """
    return hash(
        current_validator_registry_delta_chain_tip +
        bytes1(flag) +
        bytes3(index) +
        bytes32(pubkey)
    )

integer_squareroot

def integer_squareroot(n: int) -> int:
    """
    The largest integer ``x`` such that ``x**2`` is less than ``n``.
    """
    x = n
    y = (x + 1) // 2
    while y < x:
        x = y
        y = (x + n // x) // 2
    return x

On startup

A valid block with slot INITIAL_SLOT_NUMBER (a "genesis block") has the following values. Other validity rules (eg. requiring a signature) do not apply.

{
    'slot': INITIAL_SLOT_NUMBER,
    'randao_reveal': ZERO_HASH,
    'candidate_pow_receipt_roots': [],
    'ancestor_hashes': [ZERO_HASH for i in range(32)],
    'state_root': STARTUP_STATE_ROOT,
    'attestations': [],
    'specials': [],
    'proposer_signature': [0, 0],
}

STARTUP_STATE_ROOT is the root of the initial state, computed by running the following code:

def on_startup(initial_validator_entries: List[Any],
               genesis_time: int,
               processed_pow_receipt_root: Hash32) -> BeaconState:
    # Activate validators
    initial_validator_registry = []
    for pubkey, deposit, proof_of_possession, withdrawal_credentials, randao_commitment in initial_validator_entries:
        initial_validator_registry, _ = get_new_validators(
            current_validators=initial_validator_registry,
            fork_data=ForkData(
                pre_fork_version=INITIAL_FORK_VERSION,
                post_fork_version=INITIAL_FORK_VERSION,
                fork_slot=2**64 - 1,
            ),
            pubkey=pubkey,
            deposit=deposit,
            proof_of_possession=proof_of_possession,
            withdrawal_credentials=withdrawal_credentials,
            randao_commitment=randao_commitment,
            current_slot=INITIAL_SLOT_NUMBER,
            status=ACTIVE,
        )

    # Setup state
    initial_shuffling = get_new_shuffling(ZERO_HASH, initial_validator_registry, 0)
    state = BeaconState(
        validator_registry=initial_validator_registry,
        validator_registry_latest_change_slot=INITIAL_SLOT_NUMBER,
        validator_registry_exit_count=0,
        validator_registry_delta_chain_tip=ZERO_HASH,
        # Randomness and committees
        randao_mix=ZERO_HASH,
        next_seed=ZERO_HASH,
        shard_and_committee_for_slots=initial_shuffling + initial_shuffling,
        persistent_committees=split(shuffle(initial_validator_registry, ZERO_HASH), SHARD_COUNT),
        persistent_committee_reassignments=[],
        # Finality
        previous_justified_slot=INITIAL_SLOT_NUMBER,
        justified_slot=INITIAL_SLOT_NUMBER,
        justified_slot_bitfield=0,
        finalized_slot=INITIAL_SLOT_NUMBER,
        # Recent state
        latest_crosslinks=[CrosslinkRecord(slot=INITIAL_SLOT_NUMBER, hash=ZERO_HASH) for _ in range(SHARD_COUNT)],
        latest_state_recalculation_slot=INITIAL_SLOT_NUMBER,
        latest_block_hashes=[ZERO_HASH for _ in range(EPOCH_LENGTH * 2)],
        latest_penalized_exit_balances=[],
        latest_attestations=[],
        # PoW receipt root
        processed_pow_receipt_root=processed_pow_receipt_root,
        candidate_pow_receipt_roots=[],
        # Misc
        genesis_time=genesis_time,
        fork_data=ForkData(
            pre_fork_version=INITIAL_FORK_VERSION,
            post_fork_version=INITIAL_FORK_VERSION,
            fork_slot=2**64 - 1,
        ),
    )

    return state

Routine for adding a validator

This routine should be run for every validator that is activated as part of a log created on Ethereum 1.0 [TODO: explain where to check for these logs]. The status of the validators added after genesis is PENDING_ACTIVATION. These logs should be processed in the order in which they are emitted by Ethereum 1.0.

First, some helper functions:

def min_empty_validator_index(validators: List[ValidatorRecord], current_slot: int) -> int:
    for i, v in enumerate(validators):
        if v.balance == 0 and v.latest_status_change_slot + DELETION_PERIOD <= current_slot:
            return i
    return None

def get_fork_version(fork_data: ForkData,
                     slot: int) -> int:
    if slot < fork_data.fork_slot:
        return fork_data.pre_fork_version
    else:
        return fork_data.post_fork_version

def get_domain(fork_data: ForkData,
               slot: int,
               domain_type: int) -> int:
    return get_fork_version(
        fork_data,
        slot
    ) * 2**32 + domain_type

def get_new_validators(validators: List[ValidatorRecord],
                       fork_data: ForkData,
                       pubkey: int,
                       deposit: int,
                       proof_of_possession: bytes,
                       withdrawal_credentials: Hash32,
                       randao_commitment: Hash32,
                       status: int,
                       current_slot: int) -> Tuple[List[ValidatorRecord], int]:
    assert BLSVerify(
        pub=pubkey,
        msg=hash(bytes32(pubkey) + withdrawal_credentials + randao_commitment),
        sig=proof_of_possession,
        domain=get_domain(
            fork_data,
            current_slot,
            DOMAIN_DEPOSIT
        )
    )
    validators_copy = copy.deepcopy(validators)
    validator_pubkeys = [v.pubkey for v in validators_copy]
    
    if pubkey not in validator_pubkeys:
        # Add new validator
        validator = ValidatorRecord(
            pubkey=pubkey,
            withdrawal_credentials=withdrawal_credentials,
            randao_commitment=randao_commitment,
            randao_skips=0,
            balance=deposit,
            status=status,
            latest_status_change_slot=current_slot,
            exit_count=0
        )

        index = min_empty_validator_index(validators_copy)
        if index is None:
            validators_copy.append(validator)
            index = len(validators_copy) - 1
        else:
            validators_copy[index] = validator
    else:
        # Increase balance by deposit
        index = validator_pubkeys.index(pubkey)
        validator = validators_copy[index]
        assert validator.withdrawal_credentials == withdrawal_credentials

        validator.balance += deposit

    return validators_copy, index

BLSVerify is a function for verifying a BLS12-381 signature, defined in the BLS12-381 spec.
Now, to add a validator or top up an existing validator's balance:

def process_deposit(state: BeaconState,
                    pubkey: int,
                    deposit: int,
                    proof_of_possession: bytes,
                    withdrawal_credentials: Hash32,
                    randao_commitment: Hash32,
                    status: int,
                    current_slot: int) -> int:
    """
    Process a deposit from Ethereum 1.0.
    Note that this function mutates `state`.
    """
    state.validator_registry, index = get_new_validators(
        current_validators=state.validator_registry,
        fork_data=ForkData(
            pre_fork_version=state.fork_data.pre_fork_version,
            post_fork_version=state.fork_data.post_fork_version,
            fork_slot=state.fork_data.fork_slot,
        ),
        pubkey=pubkey,
        deposit=deposit,
        proof_of_possession=proof_of_possession,
        withdrawal_credentials=withdrawal_credentials,
        randao_commitment=randao_commitment,
        status=status,
        current_slot=current_slot,
    )

    return index

Routine for removing a validator

def exit_validator(index: int,
                   state: BeaconState,
                   penalize: bool,
                   current_slot: int) -> None:
    """
    Exit the validator with the given `index`.
    Note that this function mutates `state`.
    """
    state.validator_registry_exit_count += 1

    validator = state.validator_registry[index]
    validator.latest_status_change_slot = current_slot
    validator.exit_count = state.validator_registry_exit_count

    # Remove validator from persistent committees
    for committee in state.persistent_committees:
        for i, validator_index in committee:
            if validator_index == index:
                committee.pop(i)
                break

    if penalize:
        validator.status = EXITED_WITH_PENALTY
        state.latest_penalized_exit_balances[current_slot // COLLECTIVE_PENALTY_CALCULATION_PERIOD] += get_effective_balance(validator)
        
        whistleblower = state.validator_registry[get_beacon_proposer_index(state, current_slot)]
        whistleblower_reward = validator.balance // WHISTLEBLOWER_REWARD_QUOTIENT
        whistleblower.balance += whistleblower_reward
        validator.balance -= whistleblower_reward
    else:
        validator.status = PENDING_EXIT

    state.validator_registry_delta_chain_tip = get_new_validator_registry_delta_chain_tip(
        validator_registry_delta_chain_tip=state.validator_registry_delta_chain_tip,
        index=index,
        pubkey=validator.pubkey,
        flag=EXIT,
    )

Per-block processing

This procedure should be carried out for every beacon block (denoted block).

  • Let parent_hash be the hash of the immediate previous beacon block (ie. equal to block.ancestor_hashes[0]).
  • Let parent be the beacon block with the hash parent_hash.

First, set state.latest_block_hashes to the output of the following:

def append_to_recent_block_hashes(old_block_hashes: List[Hash32],
                                  parent_slot: int,
                                  current_slot: int,
                                  parent_hash: Hash32) -> List[Hash32]:
    d = current_slot - parent_slot
    return old_block_hashes + [parent_hash] * d

The output of get_block_hash should not change, except that it will no longer throw for current_slot - 1. Also, check that the block's ancestor_hashes array was correctly updated, using the following algorithm:

def update_ancestor_hashes(parent_ancestor_hashes: List[Hash32],
                           parent_slot: int,
                           parent_hash: Hash32) -> List[Hash32]:
    new_ancestor_hashes = copy.copy(parent_ancestor_hashes)
    for i in range(32):
        if parent_slot % 2**i == 0:
            new_ancestor_hashes[i] = parent_hash
    return new_ancestor_hashes

Verify attestations

  • Verify that len(block.attestations) <= MAX_ATTESTATIONS_PER_BLOCK.

For each attestation in block.attestations:

  • Verify that attestation.data.slot <= block.slot - MIN_ATTESTATION_INCLUSION_DELAY.
  • Verify that attestation.data.slot >= max(parent.slot - EPOCH_LENGTH + 1, 0).
  • Verify that attestation.data.justified_slot is equal to state.justified_slot if attestation.data.slot >= state.latest_state_recalculation_slot else state.previous_justified_slot.
  • Verify that attestation.data.justified_block_hash is equal to get_block_hash(state, block, attestation.data.justified_slot).
  • Verify that either attestation.data.latest_crosslink_hash or attestation.data.shard_block_hash equals state.crosslinks[shard].shard_block_hash.
  • aggregate_sig verification:
    • Let participants = get_attestation_participants(state, attestation.data, attestation.participation_bitfield).
    • Let group_public_key = BLSAddPubkeys([state.validator_registry[v].pubkey for v in participants]).
    • Verify that BLSVerify(pubkey=group_public_key, msg=SSZTreeHash(attestation.data) + bytes1(0), sig=aggregate_sig, domain=get_domain(state.fork_data, slot, DOMAIN_ATTESTATION)).
  • [TO BE REMOVED IN PHASE 1] Verify that shard_block_hash == ZERO_HASH.
  • Append PendingAttestationRecord(data=attestation.data, participation_bitfield=attestation.participation_bitfield, custody_bitfield=attestation.custody_bitfield, slot_included=block.slot) to state.latest_attestations.

Verify proposer signature

  • Let block_hash_without_sig be the hash of block where proposer_signature is set to [0, 0].
  • Let proposal_hash = hash(ProposalSignedData(block.slot, BEACON_CHAIN_SHARD_NUMBER, block_hash_without_sig)).
  • Verify that BLSVerify(pubkey=state.validator_registry[get_beacon_proposer_index(state, block.slot)].pubkey, data=proposal_hash, sig=block.proposer_signature, domain=get_domain(state.fork_data, block.slot, DOMAIN_PROPOSAL)).

Verify and process the RANDAO reveal

First run the following state transition to update randao_skips variables for the missing slots.

for slot in range(parent.slot + 1, block.slot):
    proposer_index = get_beacon_proposer_index(state, slot)
    state.validator_registry[proposer_index].randao_skips += 1

Then:

  • Let repeat_hash(x, n) = x if n == 0 else repeat_hash(hash(x), n-1).
  • Let proposer = state.validator_registry[get_beacon_proposer_index(state, block.slot)].
  • Verify that repeat_hash(block.randao_reveal, proposer.randao_skips + 1) == proposer.randao_commitment.
  • Set state.randao_mix = xor(state.randao_mix, block.randao_reveal).
  • Set proposer.randao_commitment = block.randao_reveal.
  • Set proposer.randao_skips = 0.

Process PoW receipt root

If block.candidate_pow_receipt_root is x.candidate_pow_receipt_root for some x in state.candidate_pow_receipt_roots, set x.votes += 1. Otherwise, append to state.candidate_pow_receipt_roots a new CandidatePoWReceiptRootRecord(candidate_pow_receipt_root=block.candidate_pow_receipt_root, votes=1).

Process special objects

  • Verify that the quantity of each type of object in block.specials is less than or equal to its maximum (see table at the top).
  • Verify that objects are sorted in order of kind. That is, block.specials[i+1].kind >= block.specials[i].kind for 0 <= i < len(block.specials-1).

For each special in block.specials:

  • Verify that special.kind is a valid value.
  • Verify that special.data deserializes according to the format for the given kind.
  • Process special.data as specified below for each kind.

VOLUNTARY_EXIT

{
    'slot': 'unit64',
    'validator_index': 'uint64',
    'signature': '[uint384]',
}
  • Let validator = state.validator_registry[validator_index].
  • Verify that BLSVerify(pubkey=validator.pubkey, msg=ZERO_HASH, sig=signature, domain=get_domain(state.fork_data, slot, DOMAIN_EXIT)).
  • Verify that validator.status == ACTIVE.
  • Verify that block.slot >= slot.
  • Verify that block.slot >= validator.latest_status_change_slot + SHARD_PERSISTENT_COMMITTEE_CHANGE_PERIOD.
  • Run exit_validator(validator_index, state, penalize=False, current_slot=block.slot).

CASPER_SLASHING

We define the following SpecialAttestationData object and the helper verify_special_attestation_data:

{
   'aggregate_sig_poc_0_indices': '[uint24]',
   'aggregate_sig_poc_1_indices': '[uint24]',
   'data': AttestationData,
   'aggregate_sig': '[uint384]',
}
def verify_special_attestation_data(state: State, obj: SpecialAttestationData) -> bool:
   pubs = [aggregate_pubkey([state.validators[i].pubkey for i in obj.aggregate_sig_poc_0_indices]),
           aggregate_pubkey([state.validators[i].pubkey for i in obj.aggregate_sig_poc_1_indices])]
   return BLSMultiVerify(pubkeys=pubs, msgs=[SSZTreeHash(obj)+bytes1(0), SSZTreeHash(obj)+bytes1(1), sig=aggregate_sig)
{
    vote_1: SpecialAttestationData,
    vote_2: SpecialAttestationData,
}
  • Verify that verify_special_attestation_data(vote_1).
  • Verify that verify_special_attestation_data(vote_2).
  • Verify that vote_1.data != vote_2.data.
  • Let indices(vote) = vote.aggregate_sig_poc_0_indices + vote.aggregate_sig_poc_1_indices.
  • Let intersection = [x for x in indices(vote_1) if x in indices(vote_2)].
  • Verify that len(intersection) >= 1.
  • Verify that vote_1.data.justified_slot + 1 < vote_2.data.justified_slot + 1 == vote_2.data.slot < vote_1.data.slot or vote_1.data.slot == vote_2.data.slot.

For each validator index i in intersection, if state.validator_registry[i].status does not equal EXITED_WITH_PENALTY, then run exit_validator(i, state, penalize=True, current_slot=block.slot)

PROPOSER_SLASHING

{
    'proposer_index': 'uint24',
    'proposal_data_1': ProposalSignedData,
    'proposal_signature_1': '[uint384]',
    'proposal_data_2': ProposalSignedData,
    'proposal_signature_2': '[uint384]',
}
  • Verify that BLSVerify(pubkey=state.validator_registry[proposer_index].pubkey, msg=hash(proposal_data_1), sig=proposal_signature_1, domain=get_domain(state.fork_data, proposal_data_1.slot, DOMAIN_PROPOSAL)).
  • Verify that BLSVerify(pubkey=state.validator_registry[proposer_index].pubkey, msg=hash(proposal_data_2), sig=proposal_signature_2, domain=get_domain(state.fork_data, proposal_data_2.slot, DOMAIN_PROPOSAL)).
  • Verify that proposal_data_1 != proposal_data_2.
  • Verify that proposal_data_1.slot == proposal_data_2.slot.
  • Verify that state.validator_registry[proposer_index].status != EXITED_WITH_PENALTY.
  • Run exit_validator(proposer_index, state, penalize=True, current_slot=block.slot).

DEPOSIT_PROOF

{
    'merkle_branch': '[hash32]',
    'merkle_tree_index': 'uint64',
    'deposit_data': {
        'deposit_parameters': DepositParametersRecord,
        'value': 'uint64',
        'timestamp': 'uint64'
    },
}

Let serialized_deposit_data be the serialized form of deposit_data. It should be the DepositParametersRecordfollowed by 8 bytes fordeposit_data.valueand 8 bytes fordeposit_data.timestamp. That is, it should match deposit_data` in the Ethereum 1.0 deposit contract of which the hash was placed into the Merkle tree.

Use the following procedure to verify the merkle_branch, setting leaf=serialized_deposit_data, depth=POW_CONTRACT_MERKLE_TREE_DEPTH and root=state.processed_pow_receipt_root:

def verify_merkle_branch(leaf: Hash32, branch: [Hash32], depth: int, index: int, root: Hash32) -> bool:
    value = leaf
    for i in range(depth):
        if index % 2:
            value = hash(branch[i], value)
        else:
            value = hash(value, branch[i])
    return value == root
  • Verify that block.slot - (deposit_data.timestamp - state.genesis_time) // SLOT_DURATION < DELETION_PERIOD.
  • Run the following:
process_deposit(
    state=state,
    pubkey=deposit_data.deposit_parameters.pubkey,
    deposit=deposit_data.value,
    proof_of_possession=deposit_data.deposit_parameters.proof_of_possession,
    withdrawal_credentials=deposit_data.deposit_parameters.withdrawal_credentials,
    randao_commitment=deposit_data.deposit_parameters.randao_commitment,
    status=PENDING_ACTIVATION,
    current_slot=block.slot
)

Epoch boundary processing

Repeat the steps in this section while block.slot - state.latest_state_recalculation_slot >= EPOCH_LENGTH. For simplicity, we use s as state.latest_state_recalculation_slot.

Note that state.latest_state_recalculation_slot will always be a multiple of EPOCH_LENGTH. In the "happy case", this process will trigger, and loop once, every time block.slot passes a new exact multiple of EPOCH_LENGTH, but if a chain skips more than an entire epoch then the loop may run multiple times, incrementing state.latest_state_recalculation_slot by EPOCH_LENGTH with each iteration.

Precomputation

All validators:

  • Let active_validators = [state.validator_registry[i] for i in get_active_validator_indices(state.validator_registry)].
  • Let total_balance = sum([get_effective_balance(v) for v in active_validators]). Let total_balance_in_eth = total_balance // GWEI_PER_ETH.
  • Let reward_quotient = BASE_REWARD_QUOTIENT * integer_squareroot(total_balance_in_eth). (The per-slot maximum interest rate is 2/reward_quotient.)

Validators justifying the epoch boundary block at the start of the current epoch:

  • Let this_epoch_attestations = [a for a in state.latest_attestations if s <= a.data.slot < s + EPOCH_LENGTH]. (note: this is the set of attestations of slots in the epoch s...s+EPOCH_LENGTH-1, not attestations that got included in the chain during the epoch s...s+EPOCH_LENGTH-1)
  • Let this_epoch_boundary_attestations = [a for a in this_epoch_attestations if a.data.epoch_boundary_hash == get_block_hash(state, block, s) and a.justified_slot == state.justified_slot].
  • Let this_epoch_boundary_attesters be the union of the validator index sets given by [get_attestation_participants(state, a.data, a.participation_bitfield) for a in this_epoch_boundary_attestations].
  • Let this_epoch_boundary_attesting_balance = sum([get_effective_balance(v) for v in this_epoch_boundary_attesters]).

Validators justifying the epoch boundary block at the start of the previous epoch:

  • Let previous_epoch_attestations = [a for a in state.latest_attestations if s - EPOCH_LENGTH <= a.slot < s].
  • Let previous_epoch_boundary_attestations = [a for a in this_epoch_attestations + previous_epoch_attestations if a.epoch_boundary_hash == get_block_hash(state, block, s - EPOCH_LENGTH) and a.justified_slot == state.previous_justified_slot].
  • Let previous_epoch_boundary_attesters be the union of the validator index sets given by [get_attestation_participants(state, a.data, a.participation_bitfield) for a in previous_epoch_boundary_attestations].
  • Let previous_epoch_boundary_attesting_balance = sum([get_effective_balance(v) for v in previous_epoch_boundary_attesters]).

For every ShardAndCommittee object obj in state.shard_and_committee_for_slots:

  • Let attesting_validators(obj, shard_block_hash) be the union of the validator index sets given by [get_attestation_participants(state, a.data, a.participation_bitfield) for a in this_epoch_attestations + previous_epoch_attestations if a.shard == obj.shard and a.shard_block_hash == shard_block_hash].
  • Let attesting_validators(obj) be equal to attesting_validators(obj, shard_block_hash) for the value of shard_block_hash such that sum([get_effective_balance(v) for v in attesting_validators(obj, shard_block_hash)]) is maximized (ties broken by favoring lower shard_block_hash values).
  • Let total_attesting_balance(obj) be the sum of the balances-at-stake of attesting_validators(obj).
  • Let winning_hash(obj) be the winning shard_block_hash value.
  • Let total_balance(obj) = sum([get_effective_balance(v) for v in obj.committee]).

Let inclusion_slot(v) equal a.slot_included for the attestation a where v is in get_attestation_participants(state, a.data, a.participation_bitfield), and inclusion_distance(v) = a.slot_included - a.data.slot for the same attestation. We define a function adjust_for_inclusion_distance(magnitude, distance) which adjusts the reward of an attestation based on how long it took to get included (the longer, the lower the reward). Returns a value between 0 and magnitude.

def adjust_for_inclusion_distance(magnitude: int, distance: int) -> int:
    return magnitude // 2 + (magnitude // 2) * MIN_ATTESTATION_INCLUSION_DELAY // distance

For any validator v, let base_reward(v) = get_effective_balance(v) // reward_quotient.

Adjust justified slots and crosslink status

  • Set state.justified_slot_bitfield = (state.justified_slot_bitfield * 2) % 2**64.
  • If 3 * previous_epoch_boundary_attesting_balance >= 2 * total_balance then set state.justified_slot_bitfield &= 2 (ie. flip the second lowest bit to 1) and new_justified_slot = s - EPOCH_LENGTH.
  • If 3 * this_epoch_boundary_attesting_balance >= 2 * total_balance then set state.justified_slot_bitfield &= 1 (ie. flip the lowest bit to 1) and new_justified_slot = s.
  • If state.justified_slot == s - EPOCH_LENGTH and state.justified_slot_bitfield % 4 == 3, set state.finalized_slot = justified_slot.
  • If state.justified_slot == s - EPOCH_LENGTH - EPOCH_LENGTH and state.justified_slot_bitfield % 8 == 7, set state.finalized_slot = state.justified_slot.
  • If state.justified_slot == s - EPOCH_LENGTH - 2 * EPOCH_LENGTH and state.justified_slot_bitfield % 16 in (15, 14), set state.finalized_slot = state.justified_slot.
  • Set state.previous_justified_slot = state.justified_slot and if new_justified_slot has been set, set state.justified_slot = new_justified_slot.

For every ShardAndCommittee object obj:

  • If 3 * total_attesting_balance(obj) >= 2 * total_balance(obj), set crosslinks[shard] = CrosslinkRecord(slot=state.latest_state_recalculation_slot + EPOCH_LENGTH, hash=winning_hash(obj)).

Balance recalculations related to FFG rewards

Note: When applying penalties in the following balance recalculations implementers should make sure the uint64 does not underflow.

  • Let inactivity_penalty_quotient = SQRT_E_DROP_TIME**2. (The portion lost by offline validators after D epochs is about D*D/2/inactivity_penalty_quotient.)
  • Let time_since_finality = block.slot - state.finalized_slot.

Case 1: time_since_finality <= 4 * EPOCH_LENGTH:

  • Any validator v in previous_epoch_boundary_attesters gains adjust_for_inclusion_distance(base_reward(v) * previous_epoch_boundary_attesting_balance // total_balance, inclusion_distance(v)).
  • Any active validator v not in previous_epoch_boundary_attesters loses base_reward(v).

Case 2: time_since_finality > 4 * EPOCH_LENGTH:

  • Any validator in previous_epoch_boundary_attesters sees their balance unchanged.
  • Any active validator v not in previous_epoch_boundary_attesters, and any validator with status == EXITED_WITH_PENALTY, loses base_reward(v) + get_effective_balance(v) * time_since_finality // inactivity_penalty_quotient.

For each v in previous_epoch_boundary_attesters, we determine the proposer proposer_index = get_beacon_proposer_index(state, inclusion_slot(v)) and set state.validator_registry[proposer_index].balance += base_reward(v) // INCLUDER_REWARD_QUOTIENT.

Balance recalculations related to crosslink rewards

For every ShardAndCommittee object obj in state.shard_and_committee_for_slots[:EPOCH_LENGTH] (ie. the objects corresponding to the epoch before the current one), for each v in [state.validator_registry[index] for index in obj.committee], adjust balances as follows:

  • If v in attesting_validators(obj), v.balance += adjust_for_inclusion_distance(base_reward(v) * total_attesting_balance(obj) // total_balance(obj)), inclusion_distance(v)).
  • If v not in attesting_validators(obj), v.balance -= base_reward(v).

Ethereum 1.0 chain related rules

If state.latest_state_recalculation_slot % POW_RECEIPT_ROOT_VOTING_PERIOD == 0, then:

  • If for any x in state.candidate_pow_receipt_root, x.votes * 2 >= POW_RECEIPT_ROOT_VOTING_PERIOD set state.processed_pow_receipt_root = x.receipt_root.
  • Set state.candidate_pow_receipt_roots = [].

Validator registry change

A validator registry change occurs if all of the following criteria are satisfied:

  • state.finalized_slot > state.validator_registry_latest_change_slot
  • For every shard number shard in state.shard_and_committee_for_slots, crosslinks[shard].slot > state.validator_registry_latest_change_slot

A helper function is defined as:

def get_changed_validators(validators: List[ValidatorRecord],
                           latest_penalized_exit_balances: List[int],
                           validator_registry_delta_chain_tip: int,
                           current_slot: int) -> Tuple[List[ValidatorRecord], List[int], int]:
    """
    Return changed validator registry and `latest_penalized_exit_balances`, `validator_registry_delta_chain_tip`.
    """
    # The active validators
    active_validator_indices = get_active_validator_indices(validators)
    # The total balance of active validators
    total_balance = sum([get_effective_balance(v) for i, v in enumerate(validators) if i in active_validator_indices])
    # The maximum total Gwei that can be deposited and withdrawn
    max_allowable_change = max(
        2 * MAX_DEPOSIT * GWEI_PER_ETH,
        total_balance // MAX_CHURN_QUOTIENT
    )
    # Go through the list start to end, depositing and withdrawing as many as possible
    total_changed = 0
    for i in range(len(validators)):
        if validators[i].status == PENDING_ACTIVATION:
            validators[i].status = ACTIVE
            total_changed += get_effective_balance(validators[i])
            validator_registry_delta_chain_tip = get_new_validator_registry_delta_chain_tip(
                validator_registry_delta_chain_tip=validator_registry_delta_chain_tip,
                index=i,
                pubkey=validators[i].pubkey,
                flag=ACTIVATION,
            )
        if validators[i].status == EXITED_WITHOUT_PENALTY:
            validators[i].latest_status_change_slot = current_slot
            total_changed += get_effective_balance(validators[i])
            validator_registry_delta_chain_tip = get_new_validator_registry_delta_chain_tip(
                validator_registry_delta_chain_tip=validator_registry_delta_chain_tip,
                index=i,
                pubkey=validators[i].pubkey,
                flag=EXIT,
            )
        if total_changed >= max_allowable_change:
            break

    # Calculate the total ETH that has been penalized in the last ~2-3 withdrawal periods
    period_index = current_slot // COLLECTIVE_PENALTY_CALCULATION_PERIOD
    total_penalties = (
        (latest_penalized_exit_balances[period_index]) +
        (latest_penalized_exit_balances[period_index - 1] if period_index >= 1 else 0) +
        (latest_penalized_exit_balances[period_index - 2] if period_index >= 2 else 0)
    )

    # Calculate penalties for slashed validators
    def to_penalize(v):
        return v.status == EXITED_WITH_PENALTY
    validators_to_penalize = filter(to_penalize, validators)
    for v in validators_to_penalize:
        v.balance -= get_effective_balance(v) * min(total_penalties * 3, total_balance) // total_balance

    return validators, latest_penalized_exit_balances, validator_registry_delta_chain_tip

Then, run the following algorithm to update the validator registry:

def change_validators(state: BeaconState,
                      current_slot: int) -> None:
    """
    Change validator registry.
    Note that this function mutates `state`.
    """
    state.validator_registry, state.latest_penalized_exit_balances = get_changed_validators(
        copy.deepcopy(state.validator_registry),
        copy.deepcopy(state.latest_penalized_exit_balances),
        state.validator_registry_delta_chain_tip,
        current_slot
    )

And perform the following updates to the state:

  • Set state.validator_registry_latest_change_slot = s + EPOCH_LENGTH.
  • Set state.shard_and_committee_for_slots[:EPOCH_LENGTH] = state.shard_and_committee_for_slots[EPOCH_LENGTH:].
  • Let state.next_start_shard = (state.shard_and_committee_for_slots[-1][-1].shard + 1) % SHARD_COUNT.
  • Set state.shard_and_committee_for_slots[EPOCH_LENGTH:] = get_new_shuffling(state.next_seed, state.validator_registry, next_start_shard).
  • Set state.next_seed = state.randao_mix.

If a validator registry change does NOT happen

  • Set state.shard_and_committee_for_slots[:EPOCH_LENGTH] = state.shard_and_committee_for_slots[EPOCH_LENGTH:].
  • Let time_since_finality = block.slot - state.validator_registry_latest_change_slot.
  • Let start_shard = state.shard_and_committee_for_slots[0][0].shard.
  • If time_since_finality * EPOCH_LENGTH <= MIN_VALIDATOR_REGISTRY_CHANGE_INTERVAL or time_since_finality is an exact power of 2, set state.shard_and_committee_for_slots[EPOCH_LENGTH:] = get_new_shuffling(state.next_seed, state.validator_registry, start_shard) and set state.next_seed = state.randao_mix. Note that start_shard is not changed from the last epoch.

Proposer reshuffling

Run the following code to update the shard proposer set:

active_validator_indices = get_active_validator_indices(state.validator_registry)
num_validators_to_reshuffle = len(active_validator_indices) // SHARD_PERSISTENT_COMMITTEE_CHANGE_PERIOD
for i in range(num_validators_to_reshuffle):
    # Multiplying i to 2 to ensure we have different input to all the required hashes in the shuffling
    # and none of the hashes used for entropy in this loop will be the same
    validator_index = active_validator_indices[hash(state.randao_mix + bytes8(i * 2)) % len(active_validator_indices)]
    new_shard = hash(state.randao_mix + bytes8(i * 2 + 1)) % SHARD_COUNT
    shard_reassignment_record = ShardReassignmentRecord(
        validator_index=validator_index,
        shard=new_shard,
        slot=s + SHARD_PERSISTENT_COMMITTEE_CHANGE_PERIOD
    )
    state.persistent_committee_reassignments.append(shard_reassignment_record)

while len(state.persistent_committee_reassignments) > 0 and state.persistent_committee_reassignments[0].slot <= s:
    reassignment = state.persistent_committee_reassignments.pop(0)
    for committee in state.persistent_committees:
        if reassignment.validator_index in committee:
            committee.pop(committee.index(reassignment.validator_index))
    state.persistent_committees[reassignment.shard].append(reassignment.validator_index)

Finally...

  • Remove all attestation records older than slot s.
  • For any validator with index i with balance less than MIN_BALANCE and status ACTIVE, run exit_validator(i, state, penalize=False, current_slot=block.slot).
  • Set state.latest_block_hashes = state.latest_block_hashes[EPOCH_LENGTH:].
  • Set state.latest_state_recalculation_slot += EPOCH_LENGTH.

Appendix

Appendix A - Hash function

We aim to have a STARK-friendly hash function hash(x) for the production launch of the beacon chain. While the standardisation process for a STARK-friendly hash function takes place—led by STARKware, who will produce a detailed report with recommendations—we use BLAKE2b-512 as a placeholder. Specifically, we set hash(x) := BLAKE2b-512(x)[0:32] where the BLAKE2b-512 algorithm is defined in RFC 7693 and the input x is of type bytes.

References

This section is divided into Normative and Informative references. Normative references are those that must be read in order to implement this specification, while Informative references are merely that, information. An example of the former might be the details of a required consensus algorithm, and an example of the latter might be a pointer to research that demonstrates why a particular consensus algorithm might be better suited for inclusion in the standard than another.

Normative

Informative

python-poc
  Python proof-of-concept implementation. Ethereum Foundation. URL: https://github.com/ethereum/beacon_chain

Copyright

Copyright and related rights waived via CC0.