-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgomoku.py
531 lines (459 loc) · 19.6 KB
/
gomoku.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import math
import copy
import random
import time
BOARD_SIZE = 19
WHITE = 'O'
BLACK = 'X'
INF = math.inf
DIRECTIONS = [(1, -1), (1, 0), (1, 1), (0, 1)] # row, col
ACTION_TO_VALUE = {}
def not_player(player):
if player == WHITE:
return BLACK
else:
return WHITE
def board_place(board, col, row, player):
if col < 0 or col > BOARD_SIZE - 1 or row < 0 or row > BOARD_SIZE - 1:
return False
new_board = copy.deepcopy(board)
new_board[row][col] = player
return new_board
def result(state, col, row, player):
return board_place(state, col, row, player)
def cutoff_test(depth, time_variable):
start_time, time_limit = time_variable[0], time_variable[1]
endTime = time.time() - start_time
if endTime > time_limit:
return True
if depth <= 0:
return True
else:
return False
def safe_bound(col: int, row: int) -> bool:
if col < 0 or col > BOARD_SIZE - 1 or row < 0 or row > BOARD_SIZE - 1:
return False
else:
return True
# XXXXX
def condition_five_in_row(state: object, col: int, row: int, d_col: int, d_row: int, player: str) -> int:
res = 0
if (player == state[row][col] == state[row + d_row * 1][col + d_col * 1] == state[row + d_row * 2][
col + d_col * 2] == state[row + d_row * 3][col + d_col * 3] == state[row + d_row * 4][col + d_col * 4]):
res += 1
return res
# _XXXX_
def condition_four_in_row_low(state, col, row, d_col, d_row, player):
res = 0
if (state[row][col] == '_' and player == state[row + d_row * 1][col + d_col * 1] ==
state[row + d_row * 2][col + d_col * 2] == state[row + d_row * 3][col + d_col * 3] ==
state[row + d_row * 4][col + d_col * 4] and state[row + d_row * 5][col + d_col * 5] == '_'):
res += 1
return res
# _XXXXO(_XXXX|) or OXXXX_(|XXXX_)
def condition_four_in_row(state, col, row, d_col, d_row, player):
res = 0
if (state[row][col] == '_' and player == state[row + d_row * 1][col + d_col * 1] ==
state[row + d_row * 2][col + d_col * 2] == state[row + d_row * 3][col + d_col * 3] ==
state[row + d_row * 4][col + d_col * 4] and
state[row + d_row * 5][col + d_col * 5] == not_player(player)):
res += 1
if (state[row][col] == not_player(player) and player == state[row + d_row * 1][col + d_col * 1] ==
state[row + d_row * 2][col + d_col * 2] == state[row + d_row * 3][col + d_col * 3] ==
state[row + d_row * 4][col + d_col * 4] and
state[row + d_row * 5][col + d_col * 5] == '_'):
res += 1
# TODO: scalar별로 categorize
if (row == 0 and col == 0 and player == state[row][col] == state[row + d_row * 1][col + d_col * 1] ==
state[row + d_row * 2][col + d_col * 2] == state[row + d_row * 3][col + d_col * 3] and
state[row + d_row * 4][col + d_col * 4] == '_'):
res += 1
if (row == 0 and (d_row, d_col) != (0, 1)
and player == state[row][col] == state[row + d_row * 1][col + d_col * 1] ==
state[row + d_row * 2][col + d_col * 2] == state[row + d_row * 3][col + d_col * 3] and
state[row + d_row * 4][col + d_col * 4] == '_'):
res += 1
if (col == 0 and (d_row, d_col) != (-1, 0)
and player == state[row][col] == state[row + d_row * 1][col + d_col * 1] ==
state[row + d_row * 2][col + d_col * 2] == state[row + d_row * 3][col + d_col * 3] and
state[row + d_row * 4][col + d_col * 4] == '_'):
res += 1
return res
# _XXX_ 만 counting
def condition_three_in_row(state, col, row, d_col, d_row, player):
res = 0
if (state[row][col] == '_' and player == state[row + d_row * 1][col + d_col * 1] == state[row + d_row * 2][
col + d_col * 2] == state[row + d_row * 3][col + d_col * 3] and state[row + d_row * 4][col + d_col * 4] == '_'):
res += 1
return res
# _XXXO(_XXX| or OXXX_ (|XXX_)
def condition_three_in_row_low(state, col, row, d_col, d_row, player):
res = 0
if (state[row][col] == not_player(player) and player == state[row + d_row * 1][col + d_col * 1] ==
state[row + d_row * 2][col + d_col *
2] == state[row + d_row * 3][col + d_col * 3]
and state[row + d_row * 4][col + d_col * 4] == '_'):
res += 1
if (state[row][col] == '_' and player == state[row + d_row * 1][col + d_col * 1] ==
state[row + d_row * 2][col + d_col *
2] == state[row + d_row * 3][col + d_col * 3]
and state[row + d_row * 4][col + d_col * 4] == not_player(player)):
res += 1
if (row == 0 and col == 0
and player == state[row][col] == state[row + d_row * 1][col + d_col * 1] ==
state[row + d_row * 2][col + d_col * 2]
and state[row + d_row * 3][col + d_col * 3] == '_'):
res += 1
if (row == 0 and (d_row, d_col) != (0, 1)
and player == state[row][col] == state[row + d_row * 1][col + d_col * 1] ==
state[row + d_row * 2][col + d_col * 2]
and state[row + d_row * 3][col + d_col * 3] == '_'):
res += 1
if (col == 0 and (d_row, d_col) != (-1, 0)
and player == state[row][col] == state[row + d_row * 1][col + d_col * 1] ==
state[row + d_row * 2][col + d_col * 2]
and state[row + d_row * 3][col + d_col * 3] == '_'):
res += 1
return res
# _XX_
def condition_two_in_row(state, col, row, d_col, d_row, player):
res = 0
if (state[row][col] == '_' and player == state[row + d_row * 1][col + d_col * 1] == state[row + d_row * 2][
col + d_col * 2] and state[row + d_row * 3][col + d_col * 3] == '_'):
res += 1
return res
# _XXO OXX_
def condition_two_in_row_low(state, col, row, d_col, d_row, player):
res = 0
if (state[row][col] == '_'
and player == state[row + d_row * 1][col + d_col * 1] == state[row + d_row * 2][col + d_col * 2]
and state[row + d_row * 3][col + d_col * 3] == not_player(player)):
res += 1
if (state[row][col] == not_player(player)
and player == state[row + d_row * 1][col + d_col * 1] == state[row + d_row * 2][col + d_col * 2]
and state[row + d_row * 3][col + d_col * 3] == '_'):
res += 1
return res
# _X_ _XO OX_
def condition_non_threat(state, col, row, d_col, d_row, player):
res = 0
if (state[row][col] == '_'
and player == state[row + d_row * 1][col + d_col * 1]
and state[row + d_row * 2][col + d_col * 2] == '_'):
res += 1
if (state[row][col] == '_'
and player == state[row + d_row * 1][col + d_col * 1]
and state[row + d_row * 2][col + d_col * 2] == not_player(player)):
res += 1
if (state[row][col] == not_player(player)
and player == state[row + d_row * 1][col + d_col * 1]
and state[row + d_row * 2][col + d_col * 2] == '_'):
res += 1
return res
def precondition(col, row, d_col, d_row, scalar):
if safe_bound(col + d_col * scalar, row + d_row * scalar):
return True
else:
return False
def count_current_position(state, col, row, player):
w1, w2, w3, w4, w5, w6, w7, w8 = 0, 0, 0, 0, 0, 0, 0, 0
for d_row, d_col in DIRECTIONS:
if precondition(col, row, d_col, d_row, 4):
w1 += condition_five_in_row(state, col, row, d_col, d_row, player)
if precondition(col, row, d_col, d_row, 5):
w2 += condition_four_in_row_low(state,
col, row, d_col, d_row, player)
if precondition(col, row, d_col, d_row, 5):
w3 += condition_four_in_row(state, col, row, d_col, d_row, player)
if precondition(col, row, d_col, d_row, 4):
w4 += condition_three_in_row(state, col, row, d_col, d_row, player)
if precondition(col, row, d_col, d_row, 4):
w5 += condition_three_in_row_low(state,
col, row, d_col, d_row, player)
if precondition(col, row, d_col, d_row, 3):
w6 += condition_two_in_row(state, col, row, d_col, d_row, player)
if precondition(col, row, d_col, d_row, 3):
w7 += condition_two_in_row_low(state,
col, row, d_col, d_row, player)
if precondition(col, row, d_col, d_row, 2):
w8 += condition_non_threat(state, col, row, d_col, d_row, player)
return w1, w2, w3, w4, w5, w6, w7, w8
def eval_state(state, player):
f1, f2, f3, f4, f5, f6, f7, f8 = 0, 0, 0, 0, 0, 0, 0, 0
for row in range(0, BOARD_SIZE):
for col in range(0, BOARD_SIZE):
if not check_neighbor(col, row, state):
continue
ww1, ww2, ww3, ww4, ww5, ww6, ww7, ww8 = \
count_current_position(state, col, row, player)
f1 += ww1
f2 += ww2
f3 += ww3
f4 += ww4
f5 += ww5
f6 += ww6
f7 += ww7
f8 += ww8
pass
pass
w1 = 50000000 # 1) XXXXX
w2 = 5005000 # 2) _XXXX_
w3 = 500500 # 3) _XXXXO(_XXXX|) or OXXXX_(|XXXX_)
w4 = 100050 # 4) _XXX_ 만 counting
w5 = 10000 # 5) _XXXO(_XXX| or OXXX_ (|XXX_)
w6 = 1000 # 6) _XX_
w7 = 10 # 7) _XXO OXX_
w8 = 1 # 8) _X_ _XO OX_
res = f1 * w1 + f2 * w2 + f3 * w3 + f4 * \
w4 + f5 * w5 + f6 * w6 + f7 * w7 + f8 * w8
return res
def make_movable_actions(state, player):
actions = []
actions.clear()
for row in range(0, BOARD_SIZE):
for col in range(0, BOARD_SIZE):
if state[row][col] != '_':
continue
if not check_neighbor(col, row, state):
continue
if gomoku_rule_samsam(state, col, row, player):
continue
actions.append((row, col))
pass
if len(actions) < 1: # 군집 구역이 없는 경우 == 첫 수를 두는 경우
row, col = random.randrange(
0, BOARD_SIZE), random.randrange(0, BOARD_SIZE)
actions.append((row, col))
random.shuffle(actions)
return actions
def gomoku_rule_samsam(state, col, row, player):
new_state = board_place(state, col, row, player)
ds = [(-1, -1), (1, 1),
(-1, 0), (1, 0),
(-1, 1), (1, -1),
(0, -1), (0, 1)]
cnt = 0
for d in ds:
d_r = d[0]
d_c = d[1]
if (safe_bound(row - d_r, row + d_c) and safe_bound(row + d_r * 3, col + d_c * 3) and
new_state[row - d_r][col + d_c] == '_' and new_state[row][col] == new_state[row + d_r][col + d_c] ==
new_state[row + 2 * d_r][col + 2 * d_c] and new_state[row + 3 * d_r][col + 3 * d_c] == '_'):
cnt += 1
return cnt >= 2
def check_neighbor(col, row, state):
# 좌상 좌 좌하 하 우하 우 우상 상
ds = [(-1, -1), (1, 1),
(-1, 0), (1, 0),
(-1, 1), (1, -1),
(0, -1), (0, 1)]
for d in ds:
r = d[0]
c = d[1]
if safe_bound(col + c, row + r):
if state[row + r][col + c] != '_':
return True
else:
pass
else:
pass
return False
def eval_minimax(state, player):
myV = eval_state(state, player)
yourV = eval_state(state, not_player(player))
return myV - yourV
def alpha_beta_search_IDS(state, player, depth, time_variable):
start_time, time_limit = time_variable[0], time_variable[1]
v = -INF
alpha, beta = -INF, INF
actions = []
if len(ACTION_TO_VALUE) == 0:
actions = make_movable_actions(state, player)
else: # 이미 계산했던 것이라면 최대한 VALUE가 높았던 순서대로 탐색 시도.
actions = list(map(lambda x: x[0], sorted(
ACTION_TO_VALUE.items(), key=lambda x: x[1], reverse=True)))
for action in actions:
endTime = time.time() - start_time
if endTime > time_limit:
break
row = action[0]
col = action[1]
vv = min_value_IDS(result(state, col, row, player),
alpha, beta, depth - 1, player, time_variable)
ACTION_TO_VALUE[action] = vv
v = max(v, vv)
if v >= beta: # upper bound
break
alpha = max(alpha, v)
for action, value in ACTION_TO_VALUE.items():
if value == v:
return action
random_move = random.choices(actions) # 최적해가 존재하지 않는 경우. (발생 X)
return random_move # the action in ACTIONS(state) with value v
def min_value_IDS(state, alpha, beta, depth, player, time_variable):
if cutoff_test(depth, time_variable):
return eval_minimax(state, player)
else:
v = INF
actions = make_movable_actions(state, player)
for action in actions:
row = action[0]
col = action[1]
v = min(v, max_value_IDS(result(state, col, row, not_player(player)), alpha, beta, depth - 1, player,
time_variable))
if v <= alpha: # lower bound
return v
beta = min(beta, v)
return v
def max_value_IDS(state, alpha, beta, depth, player, time_variable):
if cutoff_test(depth, time_variable):
return eval_minimax(state, player)
else:
v = -INF
actions = make_movable_actions(state, player)
for action in actions:
row = action[0]
col = action[1]
v = max(v, min_value_IDS(result(state, col, row, player),
alpha, beta, depth, player, time_variable))
if v >= beta: # upper bound
return v
alpha = max(alpha, v)
return v # utility value
def depth_limit_search(problem_state, player, depth, time_limit):
start_time = time.time()
return alpha_beta_search_IDS(problem_state, player, depth, (start_time, time_limit))
def iterative_deepening_search(state, player, selected_limit, time_limit):
ACTION_TO_VALUE.clear() # action_to_values 값을 초기화
depth_limit = selected_limit + 1 # IDS의 depth_limit. difficulty와 관련있는 변수.
search_result = []
for depth in range(1, depth_limit):
search_result = depth_limit_search(state, player, depth, time_limit)
return search_result
class Problem:
def __init__(self, initial_state=None):
if initial_state is None:
initial_state = [["_" for i in range(19)] for j in range(19)]
self.state = initial_state
self.my_colour = BLACK
self.ai_colour = WHITE
self.depth_limit = 2
self.time_limit = 10
def put_stone(self, row, col, player):
new_state = board_place(self.state, col, row, player)
if new_state:
self.state = new_state
else:
print("ERROR")
return False
def display(self):
print('r,c\t', end='')
for col in range(BOARD_SIZE):
print('{:3}'.format(col), end='')
print()
for row in range(BOARD_SIZE):
print('{:2}|\t'.format(row), end='')
for col in range(BOARD_SIZE):
print('{:>3}'.format(self.state[row][col]), end='')
print()
def put_able(self, row, col, player):
return safe_bound(row, col) and self.state[row][col] == '_' and not gomoku_rule_samsam(self.state, row, col,
player)
def start(self):
# 게임 시작한다고 알려주기.
# 팀 선택하기
print('오목 게임을 시작합니다.')
while True:
print('1. AI의 search_depth (2 ply 당 1 depth)를 선택하세요')
print('-- 큰 값일 수록 오래 걸립니다.')
print('-- 2를 추천합니다. 2는 5초 이내로 탐색을 완료합니다.')
print('-- 2보다 클 경우 시간제한을 벗어날 수 있습니다.')
print('-- 1 ~ 5 ')
print()
depth_limit: int = int(input('>> '))
if 1 <= depth_limit <= 5:
self.depth_limit = depth_limit
break
else:
print('1 ~ 3 사이의 값만 입력해주세요.')
print()
while True:
print('2. AI의 탐색 제한 시간을 설정해주세요.')
print('-- 5 ~ 120초')
print('-- e.g. 10 : 10초의 제한시간')
print()
time_limit: int = int(input('>> '))
if 1 <= time_limit <= 120:
self.time_limit = time_limit
break
else:
print('너무 오래걸리는 제한입니다. 다시 생각해보세요.')
print('depth_limit:{}, time_limit:{}로 설정되었습니다.'.format(
depth_limit, time_limit))
print()
def choose_team(self):
while True:
print('3. 색을 선택하세요.')
print('-- 1.BLACK')
print('-- 2.WHITE')
print()
colour: int = int(input('>> '))
if colour == 1 or colour == 2:
self.my_colour = BLACK if colour == 1 else WHITE
self.ai_colour = not_player(self.my_colour)
break
else:
print('1 ~ 2 두 값 중 하나만 입력해주세요.')
print('색상이 {}로 선택됐습니다.'.format(self.my_colour))
print('자동으로 AI는 {}으로 설정됩니다.'.format(self.ai_colour))
def one_turn(self, current_player):
# 선택된 current_player에 따라서 player_turn 혹은 ai_turn 실행
if current_player == self.my_colour:
self.player_turn()
else:
self.ai_turn()
pass
def player_turn(self):
while True:
print('[USER] 어디에 두실건가요?')
row, col = map(int, input('>> ').split())
if self.put_able(row, col, self.my_colour):
self.put_stone(row, col, self.my_colour)
break
else:
print('둘 수 없는 곳입니다.')
print('[USER] ({}, {})에 두었습니다.'.format(row, col))
def ai_turn(self):
next_move = iterative_deepening_search(
self.state, self.ai_colour, self.depth_limit, self.time_limit)
print('[AI]삐빅...삐빅..AI는 (', next_move, ')로 움직이기를 원함.')
self.put_stone(next_move[0], next_move[1], self.ai_colour)
print('[AI] ({}, {})에 두었습니다.'.format(next_move[0], next_move[1]))
def is_over(self, player):
winning_row = 0
for r in range(BOARD_SIZE):
for c in range(BOARD_SIZE):
for d_row, d_col in DIRECTIONS:
if precondition(c, r, d_col, d_row, 4):
winning_row += condition_five_in_row(
self.state, c, r, d_col, d_row, player)
if winning_row != 0:
return True
else:
return False
init_state = [["_" for i in range(19)] for j in range(19)]
print('python의 특성상 속도가 느립니다. pypy3로 구동한다면 더 빠른 속도를 체감할 수 있습니다.')
game = Problem(init_state)
game.start() # 게임 시작. search_depth와 time_limit 설정
game.choose_team() # 팀 설정.
current_player = BLACK
while True:
game.display()
game.one_turn(current_player) # 놓을 곳 선택하기.
if game.is_over(current_player):
print('[SYS] 게임이 끝났어요!')
print('[SYS] 승자는 바로 {}입니다.'.format(current_player))
break
current_player = not_player(current_player)
game.display()
print('[SYS] 종료되었습니다~')