forked from artidoro/qlora
-
Notifications
You must be signed in to change notification settings - Fork 13
/
utils.py
103 lines (91 loc) · 3.78 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""
Shared utils for the monkeypatches
"""
import torch
def get_cu_seqlens(attn_mask):
"""generate a cumulative sequence length mask for flash attention using attn mask"""
if len(attn_mask.shape) == 1:
attn_mask = attn_mask.unsqueeze(0)
device = attn_mask.device
results = []
max_seq_lens = []
for row in attn_mask:
# Exclude zeros to avoid adding their positions to the mask
t_non_zeros = row[row != 0]
# Find where the sequence number changes (including the first position)
seq_change = torch.cat(
[
torch.tensor([1], dtype=torch.int32, device=device),
t_non_zeros[1:] != t_non_zeros[:-1],
]
)
# Get the indices where the sequence changes
change_indices = torch.cat(
[
(seq_change == 1).nonzero(as_tuple=True)[0],
torch.tensor([len(t_non_zeros)], dtype=torch.int32, device=device),
]
)
# Calculate the sequence lengths
seq_lengths = change_indices[1:] - change_indices[:-1]
# Calculate the length of the final sequence or padding
final_seq_length = len(row) - change_indices[-1]
# Append the length of the final sequence or padding to seq_lengths
if final_seq_length.item():
seq_lengths = torch.cat(
[
seq_lengths,
torch.tensor(
[final_seq_length.item()], dtype=torch.int32, device=device
),
]
)
# Calculate the cumulative sequence lengths
cu_seqlens = torch.cat(
[torch.tensor([0], dtype=torch.int32, device=device), seq_lengths.cumsum(0)]
)
max_seq_len = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
results.append(cu_seqlens)
max_seq_lens.append(max_seq_len)
return torch.stack(results).to(dtype=torch.int32), torch.stack(max_seq_lens)
def get_cu_seqlens_from_pos_ids(position_ids):
"""generate a cumulative sequence length mask for flash attention using pos ids"""
if len(position_ids.shape) == 1:
position_ids = position_ids.unsqueeze(0)
device = position_ids.device
results = []
max_seq_lens = []
for row in position_ids:
# Count the number of consecutive zeros from the right side
padding_length = (row == 0).int().flip(dims=[0]).cumprod(dim=0).sum().item()
# Adjust the row to exclude padding
adjusted_row = row[:-padding_length] if padding_length else row.clone()
# Find where the position resets to 0 (indicating a new sequence)
seq_starts = torch.cat(
[
torch.tensor([True], dtype=torch.bool, device=device),
adjusted_row[1:] == 0,
]
)
# Get the indices where the sequence starts
start_indices = torch.cat(
[
(seq_starts).nonzero(as_tuple=True)[0],
torch.tensor([len(adjusted_row)], dtype=torch.int32, device=device),
]
)
# Calculate the sequence lengths
seq_lengths = start_indices[1:] - start_indices[:-1]
# Calculate the cumulative sequence lengths
cu_seqlens = torch.cat(
[torch.tensor([0], dtype=torch.int32, device=device), seq_lengths.cumsum(0)]
)
# Append the padding length to the cumulative sequence lengths
if padding_length:
cu_seqlens = torch.cat(
[cu_seqlens, torch.tensor([len(row)], dtype=torch.int32, device=device)]
)
max_seq_len = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
results.append(cu_seqlens)
max_seq_lens.append(max_seq_len)
return torch.stack(results).to(dtype=torch.int32), torch.stack(max_seq_lens)