-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify.py
35 lines (25 loc) · 1.23 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from sklearn import svm
from sklearn.metrics import accuracy_score
from sklearn.neighbors import NearestCentroid
from sklearn.neighbors import KNeighborsClassifier
def perform_centroid_test(X_train, X_test,y_train,y_test):
centroid_classifier = NearestCentroid()
centroid_model = centroid_classifier.fit(X_train, y_train)
y_pred = centroid_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"nearest centroid accuracy = {accuracy}")
return y_pred, centroid_model.classes_
def perform_knn_test(X_train, X_test,y_train,y_test):
knn_classifier = KNeighborsClassifier(algorithm='kd_tree', leaf_size=200, n_neighbors=25,weights='distance')
knn_model = knn_classifier.fit(X_train, y_train)
y_pred = knn_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"knn accuracy = {accuracy}")
return y_pred, knn_model.classes_
def perform_svm_test(X_train, X_test,y_train,y_test):
svm_classifier = svm.SVC(C = 5,kernel = 'rbf',gamma='scale',probability=True)
svm_model = svm_classifier.fit(X_train, y_train)
y_pred = svm_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"svm accuracy = {accuracy}")
return y_pred, svm_model.classes_