forked from stanfordmlgroup/nlc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patherror_analysis.py
236 lines (201 loc) · 8.88 KB
/
error_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright 2016 Stanford University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import random
import sys
import time
import random
import string
import numpy as np
from six.moves import xrange
import tensorflow as tf
import csv
import itertools
import kenlm
import nlc_model
import nlc_data
from util import pair_iter
tf.app.flags.DEFINE_float("learning_rate", 0.001, "Learning rate.")
tf.app.flags.DEFINE_float("learning_rate_decay_factor", 0.95, "Learning rate decays by this much.")
tf.app.flags.DEFINE_float("max_gradient_norm", 5.0, "Clip gradients to this norm.")
tf.app.flags.DEFINE_float("dropout", 0.1, "Fraction of units randomly dropped on non-recurrent connections.")
tf.app.flags.DEFINE_integer("batch_size", 128, "Batch size to use during training.")
tf.app.flags.DEFINE_integer("epochs", 0, "Number of epochs to train.")
tf.app.flags.DEFINE_integer("size", 400, "Size of each model layer.")
tf.app.flags.DEFINE_integer("num_layers", 3, "Number of layers in the model.")
tf.app.flags.DEFINE_integer("max_vocab_size", 40000, "Vocabulary size limit.")
tf.app.flags.DEFINE_integer("max_seq_len", 200, "Maximum sequence length.")
tf.app.flags.DEFINE_string("data_dir", "/tmp", "Data directory")
tf.app.flags.DEFINE_string("train_dir", "/tmp", "Training directory.")
tf.app.flags.DEFINE_string("tokenizer", "CHAR", "Set to WORD to train word level model.")
tf.app.flags.DEFINE_integer("beam_size", 8, "Size of beam.")
tf.app.flags.DEFINE_string("lmfile", None, "arpa file of the language model.")
tf.app.flags.DEFINE_float("alpha", 0.3, "Language model relative weight.")
tf.app.flags.DEFINE_boolean("dev", False, "generate dev outputs with batch_decode")
tf.app.flags.DEFINE_boolean("sweep", False, "sweep all alpha rates with dev turned on")
tf.app.flags.DEFINE_boolean("score", False, "generate csv with language model scores on target and generated.")
FLAGS = tf.app.flags.FLAGS
reverse_vocab, vocab = None, None
lm = None
def create_model(session, vocab_size, forward_only):
model = nlc_model.NLCModel(
vocab_size, FLAGS.size, FLAGS.num_layers, FLAGS.max_gradient_norm, FLAGS.batch_size,
FLAGS.learning_rate, FLAGS.learning_rate_decay_factor, FLAGS.dropout,
forward_only=forward_only)
ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
return model
def get_tokenizer(FLAGS):
tokenizer = nlc_data.char_tokenizer if FLAGS.tokenizer.lower() == 'char' else nlc_data.basic_tokenizer
return tokenizer
def detokenize(sents, reverse_vocab):
# TODO: char vs word
def detok_sent(sent):
outsent = ''
for t in sent:
if t >= len(nlc_data._START_VOCAB):
outsent += reverse_vocab[t]
return outsent
return [detok_sent(s) for s in sents]
def network_score(model, sess, encoder_output, target_tokens):
score = 0.0
states = None
for (feed, pick) in zip(list(target_tokens)[:-1], list(target_tokens)[1:]):
scores, _, states = model.decode(sess, encoder_output, np.array([feed]), None, states)
score += float(scores[0, 0, pick])
return score
def detokenize_tgt(toks, reverse_vocab):
outsent = ''
for i in range(toks.shape[0]):
if toks[i] >= len(nlc_data._START_VOCAB) and toks[i] != nlc_data._PAD:
outsent += reverse_vocab[toks[i][0]]
return outsent
def lm_rank(strs, probs):
if lm is None:
return strs[0]
a = FLAGS.alpha
rescores = [(1-a)*p + a*lm.score(s) for (s, p) in zip(strs, probs)]
rerank = [rs[0] for rs in sorted(enumerate(rescores), key=lambda x:x[1])]
return strs[rerank[-1]]
def lm_rank_score(strs, probs):
"""
:param strs: candidates generated by beam search
:param target: target sentence
:param probs:
:return:
"""
if lm is None:
return strs[0]
a = FLAGS.alpha
lmscores = [lm.score(s) for s in strs]
rescores = [(1 - a) * p + a * l for (l, p) in zip(lmscores, probs)]
rerank = [rs[0] for rs in sorted(enumerate(rescores), key=lambda x: x[1])]
generated = strs[rerank[-1]]
lm_score = lmscores[rerank[-1]]
nw_score = probs[rerank[-1]]
score = rescores[rerank[-1]]
return generated, score, nw_score, lm_score
def decode_beam(model, sess, encoder_output, max_beam_size):
toks, probs = model.decode_beam(sess, encoder_output, beam_size=max_beam_size)
return toks.tolist(), probs.tolist()
def setup_batch_decode(sess):
# decode for dev-sets, in batches
global reverse_vocab, vocab, lm
if FLAGS.lmfile is not None:
print("Loading Language model from %s" % FLAGS.lmfile)
lm = kenlm.LanguageModel(FLAGS.lmfile)
print("Preparing NLC data in %s" % FLAGS.data_dir)
x_train, y_train, x_dev, y_dev, vocab_path = nlc_data.prepare_nlc_data(
FLAGS.data_dir + '/' + FLAGS.tokenizer.lower(), FLAGS.max_vocab_size,
tokenizer=get_tokenizer(FLAGS))
vocab, reverse_vocab = nlc_data.initialize_vocabulary(vocab_path)
vocab_size = len(vocab)
print("Vocabulary size: %d" % vocab_size)
print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.size))
model = create_model(sess, vocab_size, False)
return model, x_dev, y_dev
def batch_decode(model, sess, x_dev, y_dev, alpha):
error_source = [];
error_target = [];
error_generated = [];
generated_score = [];
generated_lm_score = [];
generated_nw_score = [];
target_lm_score = [];
target_nw_score = [];
for source_tokens, source_mask, target_tokens, target_mask in pair_iter(x_dev, y_dev, 1,
FLAGS.num_layers):
src_sent = detokenize_tgt(source_tokens, reverse_vocab)
tgt_sent = detokenize_tgt(target_tokens, reverse_vocab)
# Encode
encoder_output = model.encode(sess, source_tokens, source_mask)
# Decode
beam_toks, probs = decode_beam(model, sess, encoder_output, FLAGS.beam_size)
# De-tokenize
beam_strs = detokenize(beam_toks, reverse_vocab)
tgt_nw_score = network_score(model, sess, encoder_output, target_tokens)
print("Network score: %f" % tgt_nw_score)
# Language Model ranking
if not FLAGS.score:
best_str = lm_rank(beam_strs, probs)
else:
best_str, rerank_score, nw_score, lm_score = lm_rank_score(beam_strs, probs)
tgt_lm_score = lm.score(tgt_sent)
# see if this is too stupid, or doesn't work at all
error_source.append(src_sent)
error_target.append(tgt_sent)
error_generated.append(best_str)
if FLAGS.score:
target_lm_score.append(tgt_lm_score)
target_nw_score.append(tgt_nw_score)
generated_score.append(rerank_score)
generated_nw_score.append(nw_score)
generated_lm_score.append(lm_score)
print("outputting in csv file...")
# dump it out in train_dir
with open(FLAGS.train_dir + "/err_analysis/" + "err_val_alpha_" + str(alpha) + ".csv", 'wb') as f:
wrt = csv.writer(f)
wrt.writerow(['Bad Input', 'Ground Truth', 'Network Score', 'LM Score', 'Generated Hypothesis', 'Combined Score', 'Network Score', 'LM Score'])
if not FLAGS.score:
for s, t, g in itertools.izip(error_source, error_target, error_generated):
wrt.writerow([s, t, g]) # source, correct target, wrong target
else:
for s, t, tns, tls, g, gs, gns, gls in itertools.izip(error_source, error_target, target_nw_score, target_lm_score, error_generated, generated_score, generated_nw_score, generated_lm_score):
wrt.writerow([s, t, tns, tls, g, gs, gns, gls])
print("err_val_alpha_" + str(alpha) + ".csv" + "file finished")
def main(_):
with tf.Session() as sess:
if FLAGS.sweep:
alpha = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
model, x_dev, y_dev = setup_batch_decode(sess)
for a in alpha:
FLAGS.alpha = a
print("ranking with alpha = " + str(FLAGS.alpha))
batch_decode(model, sess, x_dev, y_dev, a)
else:
model, x_dev, y_dev = setup_batch_decode(sess)
print("ranking with alpha = " + str(FLAGS.alpha))
batch_decode(model, sess, x_dev, y_dev, FLAGS.alpha)
if __name__ == "__main__":
tf.app.run()