-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathduel_dqn.py
175 lines (143 loc) · 5.11 KB
/
duel_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import pickle
import random
from collections import deque
import gym_super_mario_bros
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from gym_super_mario_bros.actions import COMPLEX_MOVEMENT
from nes_py.wrappers import JoypadSpace
import time
from wrappers import *
def arrange(s):
if not type(s) == "numpy.ndarray":
s = np.array(s)
assert len(s.shape) == 3
ret = np.transpose(s, (2, 0, 1))
return np.expand_dims(ret, 0)
class replay_memory(object):
def __init__(self, N):
self.memory = deque(maxlen=N)
def push(self, transition):
self.memory.append(transition)
def sample(self, n):
return random.sample(self.memory, n)
def __len__(self):
return len(self.memory)
class model(nn.Module):
def __init__(self, n_frame, n_action, device):
super(model, self).__init__()
self.layer1 = nn.Conv2d(n_frame, 32, 8, 4)
self.layer2 = nn.Conv2d(32, 64, 3, 1)
self.fc = nn.Linear(20736, 512)
self.q = nn.Linear(512, n_action)
self.v = nn.Linear(512, 1)
self.device = device
self.seq = nn.Sequential(self.layer1, self.layer2, self.fc, self.q, self.v)
self.seq.apply(init_weights)
def forward(self, x):
if type(x) != torch.Tensor:
x = torch.FloatTensor(x).to(self.device)
x = torch.relu(self.layer1(x))
x = torch.relu(self.layer2(x))
x = x.view(-1, 20736)
x = torch.relu(self.fc(x))
adv = self.q(x)
v = self.v(x)
q = v + (adv - 1 / adv.shape[-1] * adv.max(-1, True)[0])
return q
def init_weights(m):
if type(m) == nn.Conv2d:
torch.nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
def train(q, q_target, memory, batch_size, gamma, optimizer, device):
s, r, a, s_prime, done = list(map(list, zip(*memory.sample(batch_size))))
s = np.array(s).squeeze()
s_prime = np.array(s_prime).squeeze()
a_max = q(s_prime).max(1)[1].unsqueeze(-1)
r = torch.FloatTensor(r).unsqueeze(-1).to(device)
done = torch.FloatTensor(done).unsqueeze(-1).to(device)
with torch.no_grad():
y = r + gamma * q_target(s_prime).gather(1, a_max) * done
a = torch.tensor(a).unsqueeze(-1).to(device)
q_value = torch.gather(q(s), dim=1, index=a.view(-1, 1).long())
loss = F.smooth_l1_loss(q_value, y).mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss
def copy_weights(q, q_target):
q_dict = q.state_dict()
q_target.load_state_dict(q_dict)
def main(env, q, q_target, optimizer, device):
t = 0
gamma = 0.99
batch_size = 256
N = 50000
eps = 0.001
memory = replay_memory(N)
update_interval = 50
print_interval = 10
score_lst = []
total_score = 0.0
loss = 0.0
start_time = time.perf_counter()
for k in range(1000000):
s = arrange(env.reset())
done = False
while not done:
if eps > np.random.rand():
a = env.action_space.sample()
else:
if device == "cpu":
a = np.argmax(q(s).detach().numpy())
else:
a = np.argmax(q(s).cpu().detach().numpy())
s_prime, r, done, _ = env.step(a)
s_prime = arrange(s_prime)
total_score += r
r = np.sign(r) * (np.sqrt(abs(r) + 1) - 1) + 0.001 * r
memory.push((s, float(r), int(a), s_prime, int(1 - done)))
s = s_prime
stage = env.unwrapped._stage
if len(memory) > 2000:
loss += train(q, q_target, memory, batch_size, gamma, optimizer, device)
t += 1
if t % update_interval == 0:
copy_weights(q, q_target)
torch.save(q.state_dict(), "mario_q.pth")
torch.save(q_target.state_dict(), "mario_q_target.pth")
if k % print_interval == 0:
time_spent, start_time = time.perf_counter() - start_time, time.perf_counter()
print(
"%s |Epoch : %d | score : %f | loss : %.2f | stage : %d | time spent: %f"
% (
device,
k,
total_score / print_interval,
loss / print_interval,
stage,
time_spent,
)
)
score_lst.append(total_score / print_interval)
total_score = 0
loss = 0.0
pickle.dump(score_lst, open("score.p", "wb"))
if __name__ == "__main__":
n_frame = 4
env = gym_super_mario_bros.make("SuperMarioBros-v0")
env = JoypadSpace(env, COMPLEX_MOVEMENT)
env = wrap_mario(env)
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
device = 'mps'
q = model(n_frame, env.action_space.n, device).to(device)
q_target = model(n_frame, env.action_space.n, device).to(device)
optimizer = optim.Adam(q.parameters(), lr=0.0001)
print(device)
main(env, q, q_target, optimizer, device)