forked from nd-hung/DL4DistancePrediction2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNN4Normal.py
329 lines (251 loc) · 10.6 KB
/
NN4Normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""
multi-layer neural network for single-varibale or two-variable normal distribution.
"""
import os
import sys
import time
import math
import numpy
import theano
import theano.tensor as T
#from Optimizers import AdaGrad, AdaDelta, SGDMomentum, GD
from Adams import Adam
#from LogReg import LogisticRegression as LogReg
# start-snippet-1
class HiddenLayer(object):
def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh):
"""
Typical hidden layer of a MLP: units are fully-connected and have
user-specified activation function. Weight matrix W is of shape (n_in,n_out)
and the bias vector b is of shape (n_out,).
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dmatrix
:param input: a symbolic tensor of shape (n_examples, n_in)
:type n_in: int
:param n_in: dimensionality of input
:type n_out: int
:param n_out: number of hidden units
:type activation: theano.Op or function
:param activation: Non linearity to be applied in the hidden layer
"""
self.input = input
self.n_in = n_in
self.n_out = n_out
if W is None:
W_values = numpy.asarray( rng.uniform( low = -numpy.sqrt(6. / (n_in + n_out)), high = numpy.sqrt(6. / (n_in + n_out)), size=(n_in, n_out) ), dtype=theano.config.floatX )
if activation == T.nnet.sigmoid:
W_values *= 4
W = theano.shared(value=W_values, name='HL_W', borrow=True)
if b is None:
b_values = numpy.zeros((n_out,), dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='HL_b', borrow=True)
self.W = W
self.b = b
lin_output = T.dot(input, self.W) + self.b
self.output = ( lin_output if activation is None else activation(lin_output) )
# parameters of the model
self.params = [self.W, self.b]
self.paramL1 = abs(self.W).sum() + abs(self.b).sum()
self.paramL2 = (self.W**2).sum() + (self.b**2).sum()
"""
## x is a matrix with shape (batchSize, 2)
## this function returns T.prod(x, axis=1, keepdims=True)
## we reimplement this because theano has bugs with T.prod()
def MyProd(x):
y = T.mul(x[:, 0], x[:, 1])
return y.dimshuffle(0, 'x')
"""
class NN4Normal(object):
'''
neural network for single-variable or two-variable normal distribution
A multi-layer feedforward artificial neural network for normal distribution
that has one layer or more of hidden units and nonlinear activations.
## sigma_sqr_min is the minimum value of sigma_sqr. It needs to be positive
'''
def __init__(self, rng, input=None, n_in=1, n_variables=2, n_out=5, n_hiddens=[], mymean=None, sigma_sqr_min=numpy.float32(0.0001), rho_abs_max=numpy.float32(0.99)):
"""
rng: a random number generator used to initialize weights
input has shape (batchSize, n_in)
n_in is the number of input features
n_variables indicates the number of variables. Currently only 1 or 2 variables are supported
output has shape (batchSize, n_out)
n_out is the number of parameters defining a normal distribution
when n_variables = 1, n_out = 1 or 2
when n_variables = 2, n_out = 2, 4, or 5
n_hidden: a tuple defining the number of hidden units at each hidden layer
if you already have mean and just want to estimate vaiance, then provide your mean through mymean
"""
## check the consistency between n_variables and n_out
if n_variables == 1:
assert ( n_out == 1 or n_out == 2)
elif n_variables == 2:
assert ( n_out == 2 or n_out == 4 or n_out == 5)
else:
print('ERROR: n_variables can only be 1 or 2')
exit(-1)
self.n_variables = n_variables
self.input = input
self.n_in = n_in
self.n_out = n_out
self.n_hiddens = n_hiddens
self.params = []
self.paramL1 =0
self.paramL2 =0
self.hlayers = []
self.layers = []
output_in_last_layer = input
n_out_in_last_layer = n_in
## add hidden layers
for i in xrange(len(n_hiddens)):
hiddenLayer = HiddenLayer( rng = rng, input = output_in_last_layer, n_in = n_out_in_last_layer, n_out = n_hiddens[i], activation = T.nnet.relu )
self.hlayers.append(hiddenLayer)
output_in_last_layer = hiddenLayer.output
n_out_in_last_layer = n_hiddens[i]
self.layers = self.hlayers
self.mean = None
self.sigma_sqr = None
self.corr = None
self.params4var = []
self.paramL14var = 0
self.paramL24var = 0
if mymean is not None:
self.mean = mymean
else:
## calculate the mean
uLayer = HiddenLayer( rng = rng, input = output_in_last_layer, n_in = n_out_in_last_layer, n_out = n_variables, activation = None )
self.mean = uLayer.output
self.layers.append(uLayer)
if n_out >= (2 * n_variables):
##calculate sigma_sqr, sigma and its square are positive, so we use ReLU here
sigmaLayer = HiddenLayer( rng = rng, input = output_in_last_layer, n_in = n_out_in_last_layer, n_out = n_variables, activation = T.nnet.relu )
self.sigma_sqr = sigmaLayer.output + sigma_sqr_min
self.layers.append(sigmaLayer)
self.params4var += sigmaLayer.params
self.paramL14var += sigmaLayer.paramL1
self.paramL24var += sigmaLayer.paramL2
if n_out == 5:
##calculate correlation, need to make sure that correlation falls into [-1, 1]
corrLayer = HiddenLayer( rng = rng, input = output_in_last_layer, n_in = n_out_in_last_layer, n_out = 1, activation = T.tanh )
self.corr = corrLayer.output * rho_abs_max
self.layers.append(corrLayer)
self.params4var += corrLayer.params
self.paramL14var += corrLayer.paramL1
self.paramL24var += corrLayer.paramL2
for layer in self.layers:
self.params += layer.params
self.paramL1 += layer.paramL1
self.paramL2 += layer.paramL2
self.y_pred = self.mean
outputList = [ self.mean ]
if self.sigma_sqr is not None:
outputList.append(self.sigma_sqr)
if self.corr is not None:
outputList.append(self.corr)
self.output = T.concatenate(outputList, axis=1)
## y has shape (batchSize, n_variables), sampleWeight has shape (batchSize, 1) instead of (batchSize,)
## this function returns a scalar
def NLL(self, y, useMeanOnly=False, sampleWeight=None):
assert (y.ndim == 2)
pi = numpy.pi
if self.n_variables == 1:
e = T.sqr( y -self.mean )/2.
nll = numpy.log(2*pi)/2.
if useMeanOnly or (self.sigma_sqr is None):
nll = nll + e
else:
e = e / self.sigma_sqr
nll = nll + e + T.log(self.sigma_sqr)/2.
else:
err = y - self.mean
err_sqr = T.sqr( err )
if useMeanOnly or (self.sigma_sqr is None):
sig_sqr = T.ones_like(e)
else:
sig_sqr = self.sigma_sqr
nll = T.sum(T.log(sig_sqr) + numpy.log(2*pi), axis=1, keepdims=True)/2.
e = T.sum( err_sqr/sig_sqr, axis=1, keepdims=True )
sig = T.sqrt( sig_sqr )
f = T.prod( err/sig, axis=1, keepdims=True )
if useMeanOnly or (self.corr is None):
rho = T.zeros_like(e)
else:
rho = T.corr
g = e - T.mul(rho, f) * 2.
rho_sqr = T.sqr(rho)
h = g / (2 * ( 1 - rho_sqr ) )
nll = nll + h + T.log(1 - rho_sqr)/2.
if sampleWeight is None:
return T.mean(nll)
return T.sum(T.mul(nll, sampleWeight) )/T.sum(sampleWeight)
## y has shape (batchSize, n_variables), sampleWeight shall have shape (batchSize, 1) instead of (batchSize,)
## this function returns a vector
def errors(self, y, sampleWeight=None):
assert (y.ndim == 2)
err_sqr = T.sqr( y - self.y_pred )
if sampleWeight is None:
return T.sqrt(T.mean(err_sqr, axis=0 ) )
assert (sampleWeight.ndim == 2)
if self.n_variables == 1:
weight = sampleWeight
else:
weight = T.concatenate( [ sampleWeight, sampleWeight], axis=1 )
return T.sqrt( T.sum(T.mul( err_sqr, weight ), axis=0)/ T.sum(sampleWeight) )
## y has shape (batchSize, n_variables), sampleWeight shall have shape (batchSize, 1) instead of (batchSize,)
def loss(self, y, useMeanOnly=False, sampleWeight=None):
if useMeanOnly:
return self.NLL(y, useMeanOnly=useMeanOnly, sampleWeight=sampleWeight)
else:
return self.NLL(y, sampleWeight=sampleWeight)
def testNN4Normal(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=2000,
n_hiddens=[100, 200], trainData=None, testData=None):
## generate some random train and test data
batchSize = 200000
nFeatures = 50
trainX = numpy.random.uniform(0, 1, (batchSize, nFeatures)).astype(numpy.float32)
u1 = numpy.sum( trainX[:,:30], axis=1, keepdims=True)
u2 = numpy.sum( trainX[:,21:], axis=1, keepdims=True)
trainY = (numpy.random.normal(0, 2., (batchSize, 2)) + numpy.concatenate( (u1, u2), axis=1) ).astype(numpy.float32)
testBatchSize = 500
testX = numpy.random.uniform(0, 1, (testBatchSize, nFeatures)).astype(numpy.float32)
testu1 = numpy.sum(testX[:,:30], axis=1, keepdims=True)
testu2 = numpy.sum(testX[:,21:], axis=1, keepdims=True)
testY = (numpy.random.normal(0, 2., (testBatchSize, 2)) + numpy.concatenate( (testu1, testu2), axis=1) ).astype(numpy.float32)
testCorr = numpy.sum(testX[:, 21:30], axis=1, keepdims=True)/numpy.sum(testX, axis=1, keepdims=True)
######################
# BUILD ACTUAL MODEL #
######################
print('... building the model')
# allocate symbolic variables for the data
x = T.matrix('x') # the input feature
y = T.matrix('y') # the response
rng = numpy.random.RandomState()
regressor = NN4Normal(rng, input=x, n_in=trainX.shape[1], n_variables = 2, n_out = 5, n_hiddens=n_hiddens, sigma_sqr_min=0.01)
loss = regressor.loss(y)
cost = loss + L1_reg * regressor.paramL1 + L2_reg * regressor.paramL2
error = regressor.errors(y)
gparams = [T.grad(cost, param) for param in regressor.params]
param_shapes = [ param.shape.eval() for param in regressor.params ]
updates, others = Adam(regressor.params, gparams)
train = theano.function( inputs=[x,y], outputs=[loss, error, regressor.paramL1, regressor.paramL2], updates=updates)
test = theano.function( inputs=[x,y], outputs=error)
calculate = theano.function( inputs=[x], outputs=regressor.output )
step = 200
numEpochs = 13
for j in range(0, numEpochs):
results = []
for i in range(0,trainX.shape[0], step):
los, err, l1, l2 = train(trainX[i:i+step, :], trainY[i:i+step, :])
results.append( los )
if i%5000 == 0:
print('i=', i, ' loss=', los, ' error=', err, ' L1norm=', l1, ' L2norm=', l2)
print('j=', j, ' avgLos, avgErr=', numpy.mean(results, axis=0))
out = calculate(testX)
print(numpy.concatenate( (out, testCorr, testY), axis=1).astype(numpy.float16))
print('err=', test(testX, testY))
corr = numpy.concatenate( (out[:,4:5], testCorr), axis=1)
print(numpy.corrcoef( numpy.transpose(corr) ))
import scipy
print(scipy.stats.mstats.spearmanr(corr[:,0], corr[:,1]))
if __name__ == '__main__':
testNN4Normal()