-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
218 lines (181 loc) · 6.95 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os, cv2, torch
import random
import shutil
import torch
import torchvision
import yaml
import ramps
from scipy import misc
import numpy as np
def get_config(config):
with open(config, 'r') as stream:
return yaml.load(stream)
def write_grid_grid(list_of_tensor, grid_batch_size=None, filename=None,
nocurrent=False, unnormalize=None, nrows=[8, 8], **kwargs):
batch_size = list_of_tensor[0].shape[0]
grid_batch_size = min(grid_batch_size, batch_size)
list_grid = []
for t in list_of_tensor:
if grid_batch_size is not None:
t = t[:grid_batch_size]
if unnormalize is not None:
t = unnormalize(t)
g = torchvision.utils.make_grid(t, nrow=nrows[0], **kwargs)
list_grid.append(torch.unsqueeze(g, 0).cpu())
batch_grid = torch.cat(list_grid, 0)
if filename is None:
return torchvision.utils.make_grid(batch_grid, nrow=nrows[1], **kwargs)
else:
torchvision.utils.save_image(batch_grid, filename, nrow=nrows[1], **kwargs)
if not nocurrent:
current_path = os.path.join(os.path.split(filename)[0], 'current' + os.path.splitext(filename)[-1])
torchvision.utils.save_image(batch_grid, current_path, nrow=nrows[1], **kwargs)
def save_checkpoint(state, dirpath, epoch, is_best=True, current_only=False):
if current_only:
filename = 'checkpoint.current.ckpt'
else:
filename = 'checkpoint.{}.ckpt'.format(epoch)
checkpoint_path = os.path.join(dirpath, filename)
best_path = os.path.join(dirpath, 'best.ckpt')
torch.save(state, checkpoint_path)
if is_best and not current_only:
shutil.copyfile(checkpoint_path, best_path)
class AverageMeterSet:
def __init__(self, display_metrics=None, stateful_metrics=None):
self.meters = {}
self.display_metrics = set(display_metrics) if display_metrics else set()
self.stateful_metrics = set(stateful_metrics) if stateful_metrics else set()
def __getitem__(self, key):
return self.meters[key]
def update(self, name, value, n=1):
if name not in self.meters:
self.meters[name] = AverageMeter()
self.meters[name].update(value, n)
def reset(self):
for meter in self.meters.values():
meter.reset()
def values(self, postfix=''):
return {name + postfix: meter.val for name, meter in self.meters.items()}
def averages(self, postfix='/avg'):
return {name + postfix: meter.avg for name, meter in self.meters.items()}
def sums(self, postfix='/sum'):
return {name + postfix: meter.sum for name, meter in self.meters.items()}
def counts(self, postfix='/count'):
return {name + postfix: meter.count for name, meter in self.meters.items()}
def display(self):
meters_to_disp = {k: self.meters[k] for k in self.display_metrics}
return {k: v.val if k in self.stateful_metrics else v.avg for k, v in meters_to_disp.items()}
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __format__(self, format):
return "{self.val:{format}} ({self.avg:{format}})".format(self=self, format=format)
class ImagePool():
def __init__(self, pool_size):
self.pool_size = pool_size
if self.pool_size > 0:
self.num_imgs = 0
self.images = []
def query(self, images):
from_cuda = False
if images.is_cuda:
from_cuda = True
images = images.cpu()
if self.pool_size == 0:
return images
return_images = []
for image in images:
image = torch.unsqueeze(image.data, 0)
if self.num_imgs < self.pool_size:
self.num_imgs = self.num_imgs + 1
self.images.append(image)
return_images.append(image)
else:
p = random.uniform(0, 1)
if p > 0.5:
random_id = random.randint(0, self.pool_size - 1) # randint is inclusive
tmp = self.images[random_id].clone()
self.images[random_id] = image
return_images.append(tmp)
else:
return_images.append(image)
return_images = torch.cat(return_images, 0)
if from_cuda:
return return_images.cuda()
else:
return return_images
def get_dyn_weight(current_epoch, config):
if isinstance(config, float):
return config
elif isinstance(config, int):
return float(config)
elif isinstance(config, list):
assert len(config) == 3
start_from, close_to, at_epoch = config
if start_from > close_to:
return (start_from - close_to) * ramps.cosine_rampdown(current_epoch, at_epoch) + close_to
elif start_from < close_to:
return (close_to - start_from) * ramps.sigmoid_rampup(current_epoch, at_epoch) + start_from
else:
return start_from
else:
raise NotImplementedError('Unknown config type')
def load_test_data(image_path, size=256):
img = misc.imread(image_path, mode='RGB')
img = misc.imresize(img, [size, size])
img = np.expand_dims(img, axis=0)
img = preprocessing(img)
return img
def preprocessing(x):
x = x/127.5 - 1 # -1 ~ 1
return x
def save_images(images, size, image_path):
return imsave(inverse_transform(images), size, image_path)
def inverse_transform(images):
return (images+1.) / 2
def imsave(images, size, path):
return misc.imsave(path, merge(images, size))
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[h*j:h*(j+1), w*i:w*(i+1), :] = image
return img
def check_folder(log_dir):
if not os.path.exists(log_dir):
os.makedirs(log_dir)
return log_dir
def str2bool(x):
return x.lower() in ('true')
def cam(x, size = 256):
x = x - np.min(x)
cam_img = x / np.max(x)
cam_img = np.uint8(255 * cam_img)
cam_img = cv2.resize(cam_img, (size, size))
cam_img = cv2.applyColorMap(cam_img, cv2.COLORMAP_JET)
return cam_img / 255.0
def imagenet_norm(x):
mean = [0.485, 0.456, 0.406]
std = [0.299, 0.224, 0.225]
mean = torch.FloatTensor(mean).unsqueeze(0).unsqueeze(2).unsqueeze(3).to(x.device)
std = torch.FloatTensor(std).unsqueeze(0).unsqueeze(2).unsqueeze(3).to(x.device)
return (x - mean) / std
def denorm(x):
return x * 0.5 + 0.5
def tensor2numpy(x):
return x.detach().cpu().numpy().transpose(1,2,0)
def RGB2BGR(x):
return cv2.cvtColor(x, cv2.COLOR_RGB2BGR)