-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathindex.html
500 lines (463 loc) · 28.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0"/>
<title>Time Series Forecasting with TensorFlow.js - Hong Jing (Jingles)</title>
<link rel="icon" type="image/png" href="https://jinglescode.github.io/assets/img/favicon.png">
<link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
<link href="https://fonts.googleapis.com/css?family=Lato:300,400,700" rel='stylesheet' type='text/css'>
<link href="https://jinglescode.github.io/assets/css/materialize.min.css" type="text/css" rel="stylesheet" media="screen,projection"/>
<link href="https://jinglescode.github.io/assets/css/custom.css" type="text/css" rel="stylesheet" media="screen,projection"/>
<link rel="preload" href="https://use.fontawesome.com/releases/v5.7.1/css/all.css" as="style" onload="this.rel='stylesheet'">
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-49548145-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-49548145-2');
</script>
<meta property="og:title" content="Time Series Forecasting with TensorFlow.js - Hong Jing (Jingles)"/>
<meta property="og:image" content="https://jinglescode.github.io/assets/img/posts/time-series-00.jpg"/>
<meta property="og:description" content="Pull stock prices from online API and perform predictions using Recurrent Neural Network & Long Short Term Memory (LSTM) with TensorFlow.js framework"/>
<meta property="og:url" content="https://jinglescode.github.io/time-series-forecasting-tensorflowjs" />
</head>
<body>
<div class="navbar-fixed">
<nav class="z-depth-2 nav-bar" role="navigation">
<div class="nav-wrapper container">
<a id="logo-container" class="brand-logo truncate">
Time Series Forecasting with TensorFlow.js
</a>
<ul class="right hide-on-med-and-down">
<li><a href="https://jinglescode.github.io/" class="tooltipped" data-position="top" data-tooltip="Blog"><i class="fas fa-blog"></i><span id="menu-text">Blog</span></a></li>
<li><a href="https://jinglescode.github.io/playground/" class="tooltipped" data-position="top" data-tooltip="Playground"><i class="fas fa-laptop-code"></i><span id="menu-text">Playground</span></a></li>
<li><a href="https://github.com/jinglescode" target="_blank"><i class="fab fa-github-square"></i><span id="menu-text">GitHub</span></a></li>
</ul>
<a href="#" data-target="slide-out" class="sidenav-trigger"><i class="material-icons">menu</i></a>
</div>
</nav>
<a href="#" data-target="slide-out" class="sidenav-trigger"><i class="material-icons">menu</i></a>
</div>
<ul id="slide-out" class="sidenav">
<li><a href="https://jinglescode.github.io/" class="tooltipped" data-position="top" data-tooltip="Blog"><i class="fas fa-blog"></i><span id="menu-text">Blog</span></a></li>
<li><a href="https://jinglescode.github.io/playground/" class="tooltipped" data-position="top" data-tooltip="Playground"><i class="fas fa-laptop-code"></i><span id="menu-text">Playground</span></a></li>
<li><a href="https://github.com/jinglescode" target="_blank"><i class="fab fa-github-square"></i><span id="menu-text">GitHub</span></a></li>
</ul>
<div class="container blog-content">
<div class="card">
<div class="card-content">
<h1 class="title grey-text text-darken-4">Time Series Forecasting with TensorFlow.js</h1>
<h5 class="subtitle grey-text text-darken-2">Pull stock prices from online API and perform predictions using Recurrent Neural Network and Long Short-Term Memory (LSTM) with TensorFlow.js framework.</h5>
</div>
<div class="card-image">
<img src="https://jinglescode.github.io/assets/img/posts/time-series-00.jpg" alt="Time Series Forecasting with TensorFlow.js">
</div>
<div class="card-content">
<p>
<!-- [write about the purpose for this experiment] -->
Machine learning is becoming increasingly popular these days and a growing number of the world’s population see it is as a magic crystal ball: predicting when and what will happen in the future. This experiment uses artificial neural networks to reveal stock market trends and demonstrates the ability of time series forecasting to predict future stock prices based on past historical data.
</p>
<p>
<!-- [disclaimer] -->
<b>Disclaimer</b>: As stock markets fluctuation are dynamic and unpredictable owing to multiple factors, this experiment is 100% educational and by no means a trading prediction tool.
</p>
<p>
<!-- [how to use this experiment, outline] -->
There are 4 parts to this experiment:
<li>get historical stocks prices data</li>
<li>prepare training data for our neural network model</li>
<li>training the neural network</li>
<li>do some prediction</li>
</p>
<p>
Also, do check out this repo for the <a href="https://github.com/jinglescode/time-series-forecasting-pytorch" target="_blank">PyTorch version</a> where we dig deeper on the model and the data processing steps.
</p>
<!-- <button class="waves-effect waves-light btn" type="button" onclick="demo()" id="btn_load_demo">
Load Snapshot Demo
</button>
<div id="div_demo_loaded" style="display:none">
Demo loaded, scroll down to explore.
</div> -->
</div>
</div>
<div class="card" id="div_data">
<div class="card-content">
<span class="card-title">Get Stocks Data</span>
<p>
<!-- [purpose of this step, fun for the reader] -->
Before we can train the neural network and make any predictions, we will first require data. The type of data we are looking for is time series: a sequence of numbers in chronological order. A good place to fetch these data is the <a href="https://www.alphavantage.co" target="_blank">Alpha Vantage Stock API</a>. This API allows us to retrieve chronological data on specific company stocks prices from the last 20 years. You may also refer to <a href="https://medium.com/@patrick.collins_58673/stock-api-landscape-5c6e054ee631" target="_blank">this article</a>. that explains adjusted stock prices, which is an important technical concept for working with historical market data.
</p>
<p>
You can either pick <a href="https://www.alphavantage.co/documentation/#dailyadj" target="_blank">daily adjusted</a> or <a href="https://www.alphavantage.co/documentation/#weeklyadj" target="_blank">weekly adjusted</a>, open/high/low/close/volume values, daily adjusted close values, and historical split/dividend events of the global equity specified, covering 20+ years of historical data. As suggested by <a href="https://github.com/jinglescode/time-series-forecasting-tensorflowjs/issues/4" target="_blank">desduvauchelle</a>, using adjusted close price is more robust to stock split compared to using closing price.
</p>
<p>
The API yields the following fields:
<li>open price</li>
<li>highest price of that day</li>
<li>lowest price of that day</li>
<li>closing price</li>
<li>adjusted close price (this is used in this project)</li>
<li>volume</li>
</p>
<p>
To prepare training dataset for our neural network, we will be using adjusted close stocks price; which also means that we will be aiming to predict future closing price.
</p>
<span class="card-title">Try It</span>
<p>
<!-- [how to use, what you want your reader to do after you end, as simple and obvious] -->
Use <i>demo</i> API key to fetch <i>Microsoft Corporation</i> prices or <a href="https://www.alphavantage.co/support/#api-key" target="_blank">get your own API key</a> for other stocks.
</p>
<div class="row" id="div_container_getdata">
<div class="col m4">
<div class="input-field col s12">
<label for="input_ticker">Ticker Symbol</label>
<input type="text" id="input_ticker" placeholder="example: MSFT" value="MSFT">
<small class="form-text text-muted">Demo API key only allows 'MSFT'</small>
</div>
</div>
<div class="col m4">
<div class="input-field col s12">
<label for="input_apikey">Alpha Vantage API Key</label>
<input type="text" id="input_apikey" placeholder="Input your API key or use 'demo'" value="demo">
<small class="form-text text-muted">You can claim your API key from <a href="https://www.alphavantage.co/support/#api-key" target="_blank">alphavantage.co</a></small>
</div>
</div>
<div class="col m4">
<div class="input-field col s12">
<select onchange="onClickChangeDataFreq(this)">
<option value="Weekly" onchange="onClickChangeDataFreq('Weekly')" selected>Weekly</option>
<option value="Daily" onchange="onClickChangeDataFreq('Daily')">Daily</option>
</select>
<label>Data Temporal Resolutions</label>
</div>
</div>
<div class="col s12">
<button class="waves-effect waves-light btn" id="btn_fetch_data" onclick="onClickFetchData()">Fetch Data</button>
<div class="preloader-wrapper small active" id="load_fetch_data" style="display:none">
<div class="spinner-layer spinner-green-only">
<div class="circle-clipper left">
<div class="circle"></div>
</div><div class="gap-patch">
<div class="circle"></div>
</div><div class="circle-clipper right">
<div class="circle"></div>
</div>
</div>
</div>
</div>
</div>
<div class="row" id="div_container_linegraph" style="display:none">
<div class="col s12">
<div class="card z-depth-2">
<div class="card-content">
<span class="card-title">Loaded Stocks Data</span>
<span class="card-title grey-text text-darken-4" id="div_linegraph_data_title">Card Title<</span>
<div>
<div id="div_linegraph_data" style="width:100%; height:350px;"></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- E Get Stocks Data -->
<div class="card" id="div_sma">
<div class="card-content">
<span class="card-title">Simple Moving Average</span>
<p>
<!-- [purpose of this step, fun for the reader] -->
For this experiment, we are using <a href="https://en.wikipedia.org/wiki/Supervised_learning" target="_blank">supervised learning</a>, which means feeding data to the neural network and it learns by mapping input data to the output label. One way to prepare the training dataset is to extract Simple Moving Average from that time series data.
</p>
<p>
<a href="https://www.investopedia.com/terms/s/sma.asp" target="_blank">Simple Moving Average (SMA)</a> is a method to identify trends direction for a certain period of time, by looking at the average of all the values within that time window. The number of prices in a time window is selected experimentally. For example, let's assume the closing prices for past 5 days were 13, 15, 14, 16, 17, the SMA would be (13+15+14+16+17)/5 = 15. So the <i>input</i> for our training dataset is the set of prices within a single time window, and <i>label</i> is the computed moving average of those prices.
</p>
<span class="card-title">Try It</span>
<div class="row" id="div_container_getsmafirst">
<div class="col s12">
<p>But first, <a href="#div_data">fetch stocks data</a> from the previous step.</p>
</div>
</div>
<div class="row" id="div_container_getsma" style="display:none">
<div class="col s12">
<p>
<!-- [how to use, what you want your reader to do after you end, as simple and obvious] -->
Let's generate the training dataset, hit on the <i>Compute SMA and Draw Chart</i> button to generate the training data for the neural network.
</p>
</div>
<div class="col s6">
<div class="input-field col s12">
<label for="input_windowsize">Window Size</label>
<input type="number" id="input_windowsize" placeholder="a number" value="20">
<small class="form-text text-muted">This is the "time window" for SMA</small>
</div>
</div>
<div class="col s12">
<button class="waves-effect waves-light btn" id="btn_draw_sma" onclick="onClickDisplaySMA()">Compute SMA and Draw Chart</button>
<div class="spinner-border" id="load_draw_sma" style="display:none"></div>
</div>
</div>
<div class="row" id="div_container_sma" style="display:none">
<div class="col s12">
<div class="card z-depth-2">
<div class="card-content">
<span class="card-title grey-text text-darken-4" id="div_linegraph_sma_title"></span>
<div id="div_linegraph_sma" style="width:100%; height:350px;"></div>
</div>
</div>
</div>
</div>
<div class="row" id="div_container_trainingdata" style="display:none">
<div class="col s12">
<div class="card z-depth-2">
<div class="card-content">
<span class="card-title grey-text text-darken-4">Training Data (top 25 rows)</span>
<div style="overflow-x: scroll;" id="div_trainingdata">
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- E Simple Moving Average -->
<div class="card" id="div_train">
<div class="card-content">
<span class="card-title">Train Neural Network</span>
<p>
<!-- [purpose of this step, fun for the reader] -->
Now that you have the training data, it is time to create a model for time series prediction, to achieve this we will use <a href="https://js.tensorflow.org/" target="_blank">TensorFlow.js</a> framework.
</p>
<p>
<a href="https://js.tensorflow.org/api/latest/#sequential" target="_blank">Sequential model</a> is selected which simply connects each layer and pass the data from input to the output during the training process. In order for the model to learn time series data which are sequential, <a href="https://js.tensorflow.org/api/latest/#layers.rnn" target="_blank">recurrent neural network (RNN) layer</a> layer is created and a number of <a href="https://js.tensorflow.org/api/latest/#layers.lstmCell" target="_blank">LSTM cells</a> are added to the RNN.
</p>
<p>
The model will be trained using <a href="https://js.tensorflow.org/api/latest/#train.adam" target="_blank">Adam</a> (<a href="https://arxiv.org/abs/1412.6980" target="_blank">read more</a>), a popular optimisation algorithm for machine learning. <a href="https://js.tensorflow.org/api/latest/#losses.meanSquaredError" target="_blank">Root-means-squared error</a> which determine the difference between predicted values and the actual values, so model is able to learn by minimising the error during the training process.
</p>
<p>
<!-- [how to use, what you want your reader to do after you end, as simple and obvious] -->
These are the hyperparameters (parameters used in the training process) available for tweaking:
<li>Training Dataset Size (%): the amount of data used for training, and remaining data will be used for prediction</li>
<li>Epochs: number of times the dataset is used to train the model (<a href="https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/" target="_blank">learn more</a>)</li>
<li>Learning Rate: amount of change in the weights during training in each step (<a href="https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/" target="_blank">learn more</a>)</li>
<li>Hidden LSTM Layers: to increase the model complexity to learn in higher dimensional space (<a href="https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/" target="_blank">learn more</a>)</li>
</p>
<span class="card-title">Try It</span>
<p>
<!-- [how to use, what you want your reader to do after you end, as simple and obvious] -->
You may tweak the hyperparameters and then hit the <i>Begin Training Model</i> button to train the model.
</p>
<div class="row" id="div_container_trainfirst">
<div class="col s12">
<p>Need training data? Explore the previous section to <a href="#div_sma">prepare training data</a>.</p>
</div>
</div>
<div id="div_container_train" style="display:none">
<div class="row">
<div class="col s12">
<p>
<!-- [how to use, what you want your reader to do after you end, as simple and obvious] -->
You may tweak the hyperparameters and then hit the <i>Begin Training Model</i> button to train the model.
</p>
</div>
<div class="col s6">
<div class="input-field col s12">
<label for="input_trainingsize">Training Dataset Size (%)</label>
<input type="number" id="input_trainingsize" placeholder="a number between (1-99)" value="98">
</div>
</div>
<div class="col s6">
<div class="input-field col s12">
<label for="input_epochs">Epochs</label>
<input type="number" id="input_epochs" placeholder="a number" value="10">
</div>
</div>
</div>
<div class="row">
<div class="col s6">
<div class="input-field col s12">
<label for="input_learningrate">Learning Rate</label>
<input type="number" id="input_learningrate" placeholder="a decimal" value="0.01">
<small class="form-text text-muted">Typically range between 0.01 and 0.1</small>
</div>
</div>
<div class="col s6">
<div class="input-field col s12">
<label for="input_hiddenlayers">Hidden LSTM Layers</label>
<input type="number" id="input_hiddenlayers" placeholder="a number'" value="4">
<small class="form-text text-muted">Number of LSTM layers</small>
</div>
</div>
<div class="col s12">
<button class="waves-effect waves-light btn" id="btn_draw_trainmodel" onclick="onClickTrainModel()">Begin Training Model</button>
</div>
</div>
</div>
<div class="row" id="div_container_training" style="display:none">
<div class="col s12">
<div class="card z-depth-2">
<div class="card-content">
<span class="card-title grey-text text-darken-4">Training Model</span>
<p>For MSFT, we are expecting a loss of less than 0.1. If it doesn't go below 1.0 by Epoch #5, I would suggest you to refresh the page and try again. Note that, this browser must be active for the training to progress.</p>
<h6>Progress</h6>
<!-- <div class="progress">
<div class="progress-bar progress-bar-striped progress-bar-animated" id="div_training_progressbar" role="progressbar" aria-valuenow="100" aria-valuemin="0" aria-valuemax="100" style="width: 100%"></div>
</div> -->
<div class="progress">
<div class="determinate" id="div_training_progressbar" style="width: 100%"></div>
</div>
<hr/>
<h6>Loss</h6>
<div id="div_linegraph_trainloss" style="width:100%; height:250px;"></div>
<hr/>
<h6>Logs</h6>
<div id="div_traininglog" style="overflow-x: scroll; overflow-y: scroll; height: 250px;"></div>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- E Train Neural Network -->
<div class="card">
<div class="card-content">
<span class="card-title">Validation</span>
<p>
<!-- [purpose of this step, fun for the reader] -->
Now that you have trained your model, it is time to use the model.predict function from TFJS to predicting future values. We have split the data into 2 sets, a subset of the data is training and the rest is the validation set. The training set has been used for training the model, thus will be using the validation set to validate the model. Since the model has not seen the data in the validation set before, it will be good if the model is able to predict values that are close to the exact values.
</p>
<span class="card-title">Try It</span>
<p>So let us use the remaining data for prediction which allow us to see how closely our predicted values are compared to the actual values.</p>
<p>But if the model did not predict values that map closely to its true values, check the training loss graph. Generally, this model should converge with the loss to be less than 1. You can increase the number of epochs, or tweak the other learning hyperparameters.</p>
<div class="row" id="div_container_validatefirst">
<div class="col s12">
<p>Don’t have a model to perform prediction? <a href="#div_train">Train your model</a>.</p>
</div>
</div>
<div class="row" id="div_container_validate" style="display:none">
<div class="col s12">
<p>
<!-- [how to use, what you want your reader to do after you end, as simple and obvious] -->
Hit the <i>Validate Model</i> button to see how this model performs. Whohoo!
</p>
</div>
<div class="col s6">
<button class="waves-effect waves-light btn" id="btn_validation" onclick="onClickValidate()">Validate Model</button>
<div class="spinner-border" id="load_validating" style="display:none"></div>
</div>
</div>
<div class="row" id="div_container_validating" style="display:none">
<div class="col s12">
<div class="card z-depth-2">
<div class="card-content">
<span class="card-title grey-text text-darken-4" id="div_predict_title">Compare True values to Predicted values</span>
<div id="div_validation_graph"></div>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- E Validation -->
<div class="card">
<div class="card-content">
<span class="card-title">Make Prediction</span>
<p>
<!-- [purpose of this step, fun for the reader] -->
Finally, the model has been validated and the predicted values map closely to its true values, we shall use it to predict the future. We will apply the same model.predict function and use the last {{input_windowsize}} data points as the input, because that is our window size. This means that, if our training data is increment daily, we will use the past {{input_windowsize}} days as input, to predict the next day.
</p>
<span class="card-title">Try It</span>
<div class="row" id="div_container_predictfirst">
<div class="col s12">
<p>Don’t have a model to perform prediction? <a href="#div_train">Train your model</a>.</p>
</div>
</div>
<div class="row" id="div_container_predict" style="display:none">
<div class="col s12">
<p>
<!-- [how to use, what you want your reader to do after you end, as simple and obvious] -->
Hit the <i>Validate Model</i> button to see how this model performs. Whohoo!
</p>
</div>
<div class="col s6">
<button class="waves-effect waves-light btn" id="btn_prediction" onclick="onClickPredict()">Make Prediction</button>
<div class="spinner-border" id="load_predicting" style="display:none"></div>
</div>
</div>
<div class="row" id="div_container_predicting" style="display:none">
<div class="col s12">
<div class="card z-depth-2">
<div class="card-content">
<span class="card-title grey-text text-darken-4" id="div_predict_title">Predicted</span>
<div id="div_prediction_graph"></div>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- E Make Prediction -->
<div class="card">
<div class="card-content">
<span class="card-title">Conclusion</span>
<p>
Why isn’t my Model Performing?<br/>
The model has never seen similar data in the past. In March 2020, where the market dipped and recovered within a month or two, this has never happened in history. The model is likely to fail to predict drastic changes in stock prices during those periods.<br/>
We can add more features. In a general sense, more features tend to make the model perform better. We can include trading indicators such as Moving average convergence divergence (MACD), Relative strength index (RSI), or Bollinger bands.<br/>
Add even more features. One amazing thing that <a href="https://www.alphavantage.co/documentation/#fundamentals" target="_blank">Alpha Vantage API</a> provides is Fundamental Data. This means that you can also include annual and quarterly income statements and cash flows for the company of interest. Who knows, those features might be useful.<br/>
There could have many other reasons why the model fails to learn and predict. This is the challenge of machine learning; it is both an art and science to build good performing models.
</p>
<p>
There are many ways to do time series prediction other than using a simple moving average. Do check out this repo for the <a href="https://github.com/jinglescode/time-series-forecasting-pytorch" target="_blank">PyTorch version</a> where we attempt to predict the stock price instead of the SMA. Other possible future work is to implement this with more data from various sources.<br/>
With TensorFlow.js, machine learning on a web browser is possible, and it is actually pretty cool.<br/>
Explore the demo on Github, this experiment is 100% educational and by no means a trading prediction tool.
</p>
</div>
</div>
<!-- E Conclusion -->
<div class="row">
<div class="col s12 m4">
<a href="https://github.com/jinglescode/time-series-forecasting-tensorflowjs" style="color:#000;">
<center>
<i class="fab fa-github" style="font-size: 100px;"></i><br/>
<span style="font-size:40px;">GitHub Repository</span><br/>
<p>Get the completed code</p><br/>
</center>
</a>
</div>
<div class="col s12 m4">
<a href="https://jinglescode.github.io/playground/" style="color:#000;">
<center>
<i class="fas fa-laptop-code" style="font-size: 100px;"></i><br/>
<span style="font-size:40px;">Playground</span><br/>
<p>Check out other projects</p><br/>
</center>
</a>
</div>
<div class="col s12 m4">
<a href="https://www.linkedin.com/in/jingles/" style="color:#000;">
<center>
<i class="fab fa-linkedin-in" style="font-size: 100px;"></i><br/>
<span style="font-size:40px;">Connect</span><br/>
<p>Connect with me on LinkedIn</p><br/>
</center>
</a>
</div>
</div>
</div> <!-- E container -->
<script src="https://code.jquery.com/jquery-2.1.1.min.js"></script>
<script src="https://jinglescode.github.io/assets/js/materialize.min.js" type="text/javascript"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/tf.min.js"></script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<script src="./model.js"></script>
<script src="./index.js"></script>
<script>
$(document).ready(function(){
$('.tooltipped').tooltip();
$('.scrollspy').scrollSpy();
$('.sidenav').sidenav();
});
</script>
</body>
</html>