-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtest_one_image.py
133 lines (114 loc) · 5.94 KB
/
test_one_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import scipy.misc
import time
import os
import glob
import cv2
#reader = tf.train.NewCheckpointReader("./checkpoint/CGAN_120/CGAN.model-9")
def imread(path, is_grayscale=True):
"""
Read image using its path.
Default value is gray-scale, and image is read by YCbCr format as the paper said.
"""
if is_grayscale:
#flatten=True 以灰度图的形式读取
return scipy.misc.imread(path, flatten=True, mode='YCbCr').astype(np.float)
else:
return scipy.misc.imread(path, mode='YCbCr').astype(np.float)
def imsave(image, path):
return scipy.misc.imsave(path, image)
def prepare_data(dataset):
data_dir = os.path.join(os.sep, (os.path.join(os.getcwd(), dataset)))
data = glob.glob(os.path.join(data_dir, "*.jpg"))
data.extend(glob.glob(os.path.join(data_dir, "*.bmp")))
data.sort(key=lambda x:int(x[len(data_dir)+1:-4]))
return data
def lrelu(x, leak=0.2):
return tf.maximum(x, leak * x)
def fusion_model(img):
with tf.variable_scope('fusion_model'):
with tf.variable_scope('layer1'):
weights=tf.get_variable("w1",initializer=tf.constant(reader.get_tensor('fusion_model/layer1/w1')))
bias=tf.get_variable("b1",initializer=tf.constant(reader.get_tensor('fusion_model/layer1/b1')))
conv1_ir= tf.contrib.layers.batch_norm(tf.nn.conv2d(img, weights, strides=[1,1,1,1], padding='VALID') + bias, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
conv1_ir = lrelu(conv1_ir)
with tf.variable_scope('layer2'):
weights=tf.get_variable("w2",initializer=tf.constant(reader.get_tensor('fusion_model/layer2/w2')))
bias=tf.get_variable("b2",initializer=tf.constant(reader.get_tensor('fusion_model/layer2/b2')))
conv2_ir= tf.contrib.layers.batch_norm(tf.nn.conv2d(conv1_ir, weights, strides=[1,1,1,1], padding='VALID') + bias, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
conv2_ir = lrelu(conv2_ir)
with tf.variable_scope('layer3'):
weights=tf.get_variable("w3",initializer=tf.constant(reader.get_tensor('fusion_model/layer3/w3')))
bias=tf.get_variable("b3",initializer=tf.constant(reader.get_tensor('fusion_model/layer3/b3')))
conv3_ir= tf.contrib.layers.batch_norm(tf.nn.conv2d(conv2_ir, weights, strides=[1,1,1,1], padding='VALID') + bias, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
conv3_ir = lrelu(conv3_ir)
with tf.variable_scope('layer4'):
weights=tf.get_variable("w4",initializer=tf.constant(reader.get_tensor('fusion_model/layer4/w4')))
bias=tf.get_variable("b4",initializer=tf.constant(reader.get_tensor('fusion_model/layer4/b4')))
conv4_ir= tf.contrib.layers.batch_norm(tf.nn.conv2d(conv3_ir, weights, strides=[1,1,1,1], padding='VALID') + bias, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
conv4_ir = lrelu(conv4_ir)
with tf.variable_scope('layer5'):
weights=tf.get_variable("w5",initializer=tf.constant(reader.get_tensor('fusion_model/layer5/w5')))
bias=tf.get_variable("b5",initializer=tf.constant(reader.get_tensor('fusion_model/layer5/b5')))
conv5_ir= tf.nn.conv2d(conv4_ir, weights, strides=[1,1,1,1], padding='VALID') + bias
conv5_ir=tf.nn.tanh(conv5_ir)
return conv5_ir
def input_setup(index):
padding=6
sub_ir_sequence = []
sub_vi_sequence = []
input_ir=(imread(data_ir[index])-127.5)/127.5
input_ir=np.lib.pad(input_ir,((padding,padding),(padding,padding)),'edge')
w,h=input_ir.shape
input_ir=input_ir.reshape([w,h,1])
input_vi=(imread(data_vi[index])-127.5)/127.5
input_vi=np.lib.pad(input_vi,((padding,padding),(padding,padding)),'edge')
w,h=input_vi.shape
input_vi=input_vi.reshape([w,h,1])
sub_ir_sequence.append(input_ir)
sub_vi_sequence.append(input_vi)
train_data_ir= np.asarray(sub_ir_sequence)
train_data_vi= np.asarray(sub_vi_sequence)
return train_data_ir,train_data_vi
num_epoch=3
while(num_epoch==3):
reader = tf.train.NewCheckpointReader('./checkpoint/CGAN_120/CGAN.model-'+ str(num_epoch))
with tf.name_scope('IR_input'):
#红外图像patch
images_ir = tf.placeholder(tf.float32, [1,None,None,None], name='images_ir')
with tf.name_scope('VI_input'):
#可见光图像patch
images_vi = tf.placeholder(tf.float32, [1,None,None,None], name='images_vi')
#self.labels_vi_gradient=gradient(self.labels_vi)
#将红外和可见光图像在通道方向连起来,第一通道是红外图像,第二通道是可见光图像
with tf.name_scope('input'):
#resize_ir=tf.image.resize_images(images_ir, (512, 512), method=2)
input_image=tf.concat([images_ir,images_vi],axis=-1)
with tf.name_scope('fusion'):
fusion_image=fusion_model(input_image)
with tf.Session() as sess:
init_op=tf.global_variables_initializer()
sess.run(init_op)
data_ir=prepare_data('Test_ir')
data_vi=prepare_data('Test_vi')
for i in range(len(data_ir)):
start=time.time()
train_data_ir,train_data_vi=input_setup(i)
result =sess.run(fusion_image,feed_dict={images_ir: train_data_ir,images_vi: train_data_vi})
result=result*127.5+127.5
result = result.squeeze()
image_path = os.path.join(os.getcwd(), 'result','epoch'+str(num_epoch))
if not os.path.exists(image_path):
os.makedirs(image_path)
if i<=9:
image_path = os.path.join(image_path,'F9_0'+str(i)+".bmp")
else:
image_path = os.path.join(image_path,'F9_'+str(i)+".bmp")
end=time.time()
# print(out.shape)
imsave(result, image_path)
print("Testing [%d] success,Testing time is [%f]"%(i,end-start))
tf.reset_default_graph()
num_epoch=num_epoch+1