forked from facebookincubator/AITemplate
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathweight_utils.py
115 lines (105 loc) · 3.67 KB
/
weight_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""script for converting vit model from timm to ait
"""
import pickle
import click
import torch
import torch.nn as nn
from aitemplate.testing.detect_target import detect_target
from timm.models.vision_transformer import (
VisionTransformer,
vit_base_patch16_224,
vit_large_patch16_384,
)
def convert_vit(model_name, pretrained=False):
img_size = 224
embed_dim = 768
patch_size = 16
depth = 12
mod = None
if model_name == "vit_base_patch16_224":
if pretrained:
mod = vit_base_patch16_224(pretrained=pretrained).cuda().half()
else:
mod = (
VisionTransformer(
img_size=img_size,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
class_token=False,
global_pool="avg",
depth=depth,
patch_size=patch_size,
num_heads=12,
embed_dim=embed_dim,
)
.cuda()
.half()
)
elif model_name == "vit_large_patch16_384":
img_size = 384
embed_dim = 1024
depth = 24
if pretrained:
mod = vit_large_patch16_384(pretrained=pretrained).cuda().half()
else:
mod = (
VisionTransformer(
img_size=img_size,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
class_token=False,
global_pool="avg",
depth=24,
patch_size=patch_size,
num_heads=16,
embed_dim=embed_dim,
)
.cuda()
.half()
)
else:
print(model_name)
raise NotImplementedError
params_pt = mod.named_parameters()
params_ait = {}
params_ait = {}
for key, arr in params_pt:
ait_key = key.replace(".", "_")
if len(arr.shape) == 4:
arr = arr.permute((0, 2, 3, 1)).contiguous()
if detect_target().name() == "cuda":
conv0_w_pad = (
torch.zeros((embed_dim, patch_size, patch_size, 4)).cuda().half()
)
conv0_w_pad[:, :, :, :3] = arr
arr = conv0_w_pad
params_ait[f"{ait_key}"] = arr
return params_ait
def export_to_torch_tensor(model_name, pretrained=False):
params_ait = convert_vit(model_name, pretrained)
return params_ait
@click.command()
@click.option("--model_name", default="vit_base_patch16_224", help="model name")
@click.option("--param-path", default="vit.pkl", help="saved numpy weights path")
@click.option("--pretrained", default=False, help="use pretrained weights")
def export_to_numpy(model_name, param_path, pretrained=False):
params_ait = convert_vit(model_name, pretrained)
params_np = {k: v.detach().cpu().numpy() for k, v in params_ait.items()}
with open(param_path, "wb") as f:
pickle.dump(params_np, f)
if __name__ == "__main__":
export_to_numpy()