-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_gpu.py
366 lines (303 loc) · 16.6 KB
/
train_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
import re
import torch
import numpy as np
import datetime
import argparse
import json
from pathlib import Path
from torch.utils.data import DataLoader
from torch.utils.data import DistributedSampler, RandomSampler
from torch.utils.tensorboard import SummaryWriter
from timm.utils import NativeScaler
from timm.models import create_model
from timm.optim import create_optimizer
import torch.backends.cudnn as cudnn
from models.build_models import UKAN_samll, UKAN_base, UKAN_large
from datasets import build_dataset
from util import utils
from scheduler import create_scheduler
from engine import train_one_epoch, evaluate
from estimate_model import run_pred
def get_args_parser():
parser = argparse.ArgumentParser(
'UNetKAN training and evaluation script', add_help=False)
# Dataset parameters
parser.add_argument("--Kvasir_path", type=str, default='/mnt/d/MedicalSeg/Kvasir-SEG/',
help="path to Kvasir Dataset")
parser.add_argument("--ClinicDB_path", type=str, default='/mnt/d/MedicalSeg/CVC-ClinicDB/',
help="path to CVC-ClinicDBDataset")
parser.add_argument('--predict', default=False, type=bool, help='Estimate Your model')
parser.add_argument("--img_size", type=int, default=256, help="input size")
parser.add_argument("--ignore_label", type=int, default=255, help="the dataset ignore_label")
parser.add_argument("--ignore_index", type=int, default=255, help="the dataset ignore_index")
parser.add_argument('--data_len', default=1612, type=int,
help='count of your entire data_set. For example: ImageNet 1281167')
parser.add_argument('--nb_classes', default=2, type=int,
help='number classes of your dataset')
parser.add_argument('--batch-size', default=8, type=int)
parser.add_argument("--val_batch_size", type=int, default=1, help='batch size for validation (default: 1)')
parser.add_argument('--epochs', default=5, type=int)
parser.add_argument("--train_print_freq", type=int, default=50)
parser.add_argument("--val_print_freq", type=int, default=100)
# Model parameters
parser.add_argument('--model', default='UKAN_large', type=str, metavar='MODEL',
choices=['UKAN_samll', 'UKAN_base', 'UKAN_large'],
help='Name of model to train')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=0.02, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--clip-mode', type=str, default='agc',
help='Gradient clipping mode. One of ("norm", "value", "agc")')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.025,
help='weight decay (default: 0.025)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR',
help='learning rate (default: 1e-3)')
parser.add_argument('--lr-ep', action='store_true', default=False,
help='using the epoch-based scheduler')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
help='learning rate cycle len multiplier (default: 1.0)')
parser.add_argument('--lr-cycle-decay', type=float, default=1.0, metavar='MULT',
help='amount to decay each learning rate cycle (default: 0.5)')
parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
help='learning rate cycle limit, cycles enabled if > 1')
parser.add_argument('--lr-k-decay', type=float, default=1.0,
help='learning rate k-decay for cosine/poly (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=2e-4, metavar='LR',
help='warmup learning rate (default: 1e-4)')
parser.add_argument('--min-lr', type=float, default=1e-4, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-milestones', default=[30, 60], type=int, nargs='+', metavar="MILESTONES",
help='list of decay epoch indices for multistep lr. must be increasing')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Finetuning params
parser.add_argument('--finetune', default='',
help='finetune from checkpoint')
parser.add_argument('--freeze_layers', type=bool, default=False, help='freeze layers')
parser.add_argument('--set_bn_eval', action='store_true', default=False,
help='set BN layers to eval mode during finetuning.')
parser.add_argument('--save_weights_dir', default='./output',
help='path where to save, empty for no saving')
parser.add_argument('--writer_output', default='./',
help='path where to save SummaryWriter, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--dist-eval', action='store_true',
default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=0, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=0, type=int)
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--save_freq', default=1, type=int,
help='frequency of model saving')
return parser
def main(args):
print(args)
utils.init_distributed_mode(args)
if args.local_rank == 0:
writer = SummaryWriter(os.path.join(args.writer_output, 'runs'))
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
# start = time.time()
best_mIoU = 0.0
best_F1 = 0.0
best_acc = 0.0
device = args.device
results_file = "results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
train_set, valid_set = build_dataset(args)
if args.distributed:
sampler_train = DistributedSampler(train_set, num_replicas=utils.get_world_size(), rank=utils.get_rank(), shuffle=True)
sampler_val = DistributedSampler(valid_set)
else:
sampler_train = RandomSampler(train_set)
sampler_val = torch.utils.data.SequentialSampler(valid_set)
trainloader = DataLoader(train_set, batch_size=args.batch_size, num_workers=args.num_workers,
drop_last=True, pin_memory=args.pin_mem, sampler=sampler_train)
valloader = DataLoader(valid_set, batch_size=args.val_batch_size, num_workers=args.num_workers,
drop_last=True, pin_memory=args.pin_mem, sampler=sampler_val)
model = create_model(
args.model,
num_classes=args.nb_classes,
args=args
)
model = model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum([p.numel() for p in model.parameters() if p.requires_grad])
print('\n********ESTABLISH ARCHITECTURE********')
print(f'Model: {args.model}\nNumber of parameters: {n_parameters}')
print('**************************************\n')
if args.finetune:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
checkpoint = utils.load_model(args.finetune, model)
checkpoint_model = checkpoint['model']
# state_dict = model.state_dict()
for k in list(checkpoint_model.keys()):
if 'head' in k:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
msg = model.load_state_dict(checkpoint_model, strict=False)
print(msg)
if args.freeze_layers:
for name, para in model.named_parameters():
if 'head' not in name:
para.requires_grad_(False)
else:
print('training {}'.format(name))
model.to(device)
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
output_dir = Path(args.save_weights_dir)
if args.save_weights_dir and utils.is_main_process():
with (output_dir / "model.txt").open("a") as f:
f.write(str(model))
if args.save_weights_dir and utils.is_main_process():
with (output_dir / "args.txt").open("a") as f:
f.write(json.dumps(args.__dict__, indent=2) + "\n")
checkpoint_name = utils.get_pth_file(args.save_weights_dir)
if args.resume or checkpoint_name:
args.resume = os.path.join(f'{args.save_weights_dir}/', checkpoint_name)
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
print("Loading local checkpoint at {}".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cpu')
msg = model_without_ddp.load_state_dict(checkpoint['model_state'])
print(msg)
if not args.eval:
optimizer.load_state_dict(checkpoint['optimizer_state'])
for state in optimizer.state.values(): # load parameters to cuda
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda()
lr_scheduler.load_state_dict(checkpoint['scheduler_state'])
best_mIoU = checkpoint['best_mIoU']
best_F1 = checkpoint['F1_Score']
best_acc = checkpoint['Acc']
print(f'Now max mIOU is {best_mIoU}\n')
print(f'Now max F1-score is {best_F1}\n')
print(f'Now max Accuracy is {best_acc}\n')
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
if args.eval:
# util.replace_batchnorm(model) # Users may choose whether to merge Conv-BN layers during eval
print(f"Evaluating model: {args.model}")
confmat, metric = evaluate(args, model, valloader, device, args.val_print_freq)
mean_iou = confmat.compute()[2].mean().item() * 100
mean_iou = round(mean_iou, 2)
all_f1, mean_f1 = metric.compute_f1()
all_acc, mean_acc = metric.compute_pixel_acc()
print(f"**val_meanF1: {mean_f1}\n**val_meanACC: {mean_acc}\n**val_mIOU: {mean_iou}")
print(f"Start training for {args.epochs} epochs")
for epoch in range(args.epochs):
if args.distributed:
trainloader.sampler.set_epoch(epoch)
mean_loss, lr = train_one_epoch(model, optimizer, trainloader,
epoch, device, args.train_print_freq, args.clip_grad, args.clip_mode,
loss_scaler, writer, args)
confmat, metric = evaluate(args, model, valloader, device, args.val_print_freq, writer)
mean_iou = confmat.compute()[2].mean().item() * 100
mean_iou = round(mean_iou, 2)
all_f1, mean_f1 = metric.compute_f1()
all_acc, mean_acc = metric.compute_pixel_acc()
print(f"**Val_meanF1: {mean_f1}\n**Val_meanACC: {mean_acc}\n**Val_mIOU: {mean_iou}")
lr_scheduler.step(epoch)
val_info = f'{str(confmat)}\nval_meanF1: {mean_f1}\nval_meanACC: {mean_acc}'
print(val_info)
if utils.is_main_process():
with open(results_file, "a") as f:
train_info = f"[epoch: {epoch}]\n" \
f"train_loss: {mean_loss:.4f}\n" \
f"lr: {lr:.6f}\n"
f.write(train_info + val_info + "\n\n")
# if utils.is_main_process():
# with open(results_file, 'r') as file:
# text = file.read()
# match = re.search(r'mean IoU:\s+(\d+\.\d+)', text)
# if match:
# mean_iou = float(match.group(1))
if mean_iou > best_mIoU:
print(f'Increasing mIoU: from {best_mIoU} to {mean_iou}!\n')
best_mIoU = mean_iou
print(f'Max mIOU: {best_mIoU}\n')
if utils.is_main_process():
checkpoint_save = {
"model_state": model_without_ddp.state_dict(),
"optimizer_state": optimizer.state_dict(),
"scheduler_state": lr_scheduler.state_dict(),
"best_mIoU": mean_iou,
"F1_Score": mean_f1,
"Acc": mean_acc,
"scaler": loss_scaler.state_dict()
}
torch.save(checkpoint_save, f'{args.save_weights_dir}/{args.model}_best_model.pth')
print('******************Save Checkpoint******************')
print(f'Save weights to {args.save_weights_dir}/{args.model}_best_model.pth\n')
else:
print('*********No improving mIOU, No saving checkpoint*********')
if args.predict and utils.is_main_process():
model_pred = create_model(
args.model,
num_classes=args.nb_classes,
args=args
)
print('*******************STARTING PREDICT*******************')
weights_path = f'./{args.save_weights_dir}/{args.model}_best_model.pth'
img_path = "/mnt/d/MedicalSeg/CVC-ClinicDB/Original/1.png"
roi_mask_path = "/mnt/d/MedicalSeg/CVC-ClinicDB/Ground Truth/1.png"
run_pred(args, model_pred, weights_path, img_path, roi_mask_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
'UNetKAN training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.save_weights_dir:
Path(args.save_weights_dir).mkdir(parents=True, exist_ok=True)
main(args)