forked from Tencent/HunyuanDiT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcaption_demo.py
182 lines (156 loc) · 5.85 KB
/
caption_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import torch
import sys
import os
import pandas as pd
import tqdm
# 添加当前命令行运行的目录到 sys.path
sys.path.append(os.getcwd()+"/mllm")
from llava.constants import (
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN,
IMAGE_PLACEHOLDER,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
process_images,
tokenizer_image_token,
get_model_name_from_path,
)
import requests
from PIL import Image
from io import BytesIO
import re
def image_parser(image_file, sep=','):
out = image_file.split(sep)
return out
def load_image(image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
def load_images(image_files):
out = []
for image_file in image_files:
image = load_image(image_file)
out.append(image)
return out
def init_dialoggen_model(model_path, model_base=None, load_4bit=False):
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path, model_base, model_name, llava_type_model=True, load_4bit=load_4bit)
return {"tokenizer": tokenizer,
"model": model,
"image_processor": image_processor}
def eval_model(models,
query='详细描述一下这张图片',
image_file=None,
sep=',',
temperature=0.2,
top_p=None,
num_beams=1,
max_new_tokens=512,
return_history=False,
history=None,
skip_special=False
):
# Model
disable_torch_init()
qs = query
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
if IMAGE_PLACEHOLDER in qs:
if models["model"].config.mm_use_im_start_end:
qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
else:
qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
else:
if models["model"].config.mm_use_im_start_end:
qs = image_token_se + "\n" + qs
else:
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
if not history:
conv = conv_templates['llava_v1'].copy()
else:
conv = history
if skip_special:
conv.append_message(conv.roles[0], query)
else:
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if image_file is not None:
image_files = image_parser(image_file, sep=sep)
images = load_images(image_files)
image_sizes = [x.size for x in images]
images_tensor = process_images(
images,
models["image_processor"],
models["model"].config
).to(models["model"].device, dtype=torch.float16)
else:
# fomatted input as training data
image_sizes = [(1024, 1024)]
images_tensor = torch.zeros(1, 5, 3, models["image_processor"].crop_size["height"], models["image_processor"].crop_size["width"])
images_tensor = images_tensor.to(models["model"].device, dtype=torch.float16)
input_ids = (
tokenizer_image_token(prompt, models["tokenizer"], IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0)
.cuda()
)
with torch.inference_mode():
output_ids = models["model"].generate(
input_ids,
images=images_tensor,
image_sizes=image_sizes,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
use_cache=True,
)
outputs = models["tokenizer"].batch_decode(output_ids, skip_special_tokens=True)[0].strip()
if return_history:
return outputs, conv
return outputs
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default='/apdcephfs_data_cq5_1/share_300167803/dengxinchi/project/LLaVA/checkpoints/exps/caption/caption_v3_prolr2-5_lr2-5_v5_checkpoint-50000_merge_lora')
parser.add_argument('--mode', choices=['caption_zh','caption_en','insert_content'], default="caption_zh")
parser.add_argument('--content', type=str, default=None)
parser.add_argument('--input_file', type=str, default=None) # 'images/demo.csv'
parser.add_argument('--output_file', type=str, default=None) # 'images/demo_res.csv'
parser.add_argument('--image_file', type=str, default='images/demo1.jpeg') # 'images/demo1.jpeg'
args = parser.parse_args()
if args.mode == 'caption_zh':
query = "描述这张图片"
elif args.mode == 'caption_en':
query = 'Please describe the content of this image'
elif args.mode == 'insert_content':
assert args.content is not None
query = f'根据提示词“{args.content}”,描述这张图片'
models = init_dialoggen_model(args.model_path)
if args.input_file != None:
df = pd.read_csv(args.input_file)
text_zh = []
for i in tqdm.tqdm(range(len(df))):
img_path = df.loc[i]["img_path"]
res = eval_model(models,
query=query,
image_file=img_path,
)
text_zh.append(res)
df["text_zh"] = text_zh
df.to_csv(args.output_file, index=False, encoding='utf-8-sig')
else:
res = eval_model(models,
query=query,
image_file=args.image_file,
)
print(res)