-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
145 lines (126 loc) · 5.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse, os, pickle
from networks.GAN import GAN
from networks.denseGAN import denseGAN
from networks.ACGAN import ACGAN
from networks.CGAN import CGAN
from networks.EEG_GAN import EEG_GAN
from networks.EEG_GAN_SN import EEG_GAN_SN
from networks.EEG_GRU_GAN import EEG_GRU_GAN
from networks.EEG_EncGAN import EEG_EncGAN
from networks.EEG_Encoder import EEG_Encoder
from networks.RNN import RNN
import pdb
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
"""parsing and configuration"""
def parse_args():
desc = "Pytorch implementation of GAN collections"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--gan_type', type=str, default='GAN', choices=['GAN', 'denseGAN', 'CGAN', 'ACGAN', 'EEG_GAN', 'EEG_GAN_SN', 'EEG_EncGAN', 'EEG_Encoder','RNN', 'EEG_GRU_GAN'], help='The type of GAN')#, required=True)
parser.add_argument('--dataset', type=str, default='ImageNet', choices=['mnist', 'fashion-mnist', 'celebA', 'MultiPie','miniPie', 'CASIA-WebFace','ShapeNet', 'Bosphorus', 'ImageNet'], help='The name of dataset')
parser.add_argument('--dataroot_dir', type=str, default='data', help='root path of data')
parser.add_argument('--epoch', type=int, default=25, help='The number of epochs to run')
parser.add_argument('--batch_size', type=int, default=64, help='The size of batch')
parser.add_argument('--sample_num', type=int, default=64, help='The number of samples to test')
parser.add_argument('--save_dir', type=str, default='../models', help='Directory name to save the model')
parser.add_argument('--result_dir', type=str, default='../results', help='Directory name to save the generated images')
parser.add_argument('--log_dir', type=str, default='logs', help='Directory name to save training logs')
parser.add_argument('--lrG', type=float, default=0.0002)
parser.add_argument('--lrD', type=float, default=0.0002)
parser.add_argument('--beta1', type=float, default=0.5)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--gpu_mode', type=str2bool, default=True)
parser.add_argument('--multi_gpu', type=str2bool, default=False)
parser.add_argument('--num_workers', type=int, default='1', help='number of threads for DataLoader')
parser.add_argument('--comment', type=str, default='', help='comment to put on model_name')
parser.add_argument('--loss_option', type=str, default='', help='recon,dist,GP(omitted)')
parser.add_argument('--n_critic', type=int, default=1, help='n_critic')
parser.add_argument('--n_gen', type=int, default=1, help='n_gen')
parser.add_argument('--nDaccAvg', type=int, default=5, help='number of batches for moving averaging D_acc')
parser.add_argument('--use_gp',type=str2bool, default=True)
parser.add_argument('--latent_dim', type=int, default=300, help='latent space dimension, default : 300')
parser.add_argument('--sample', type=str, default='normal', choices=['normal', 'random'])
parser.add_argument('--num_cls', type=int, default=10)
parser.add_argument('--d_trick', type=str2bool, default=True)
parser.add_argument('--use_recon', type=str2bool, default=False)
# below arguments are for eval mode
parser.add_argument('--type', type=str, default='train', help='train or test')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(opts):
# --save_dir
if not os.path.exists(opts.save_dir):
os.makedirs(opts.save_dir)
# --result_dir
if not os.path.exists(opts.result_dir):
os.makedirs(opts.result_dir)
# --result_dir
if not os.path.exists(opts.log_dir):
os.makedirs(opts.log_dir)
# --loss_option
if len(opts.loss_option)>0:
option_part = '_'+opts.loss_option
else:
option_part = ''
if len(opts.comment)>0:
print( "comment: " + opts.comment )
comment_part = '_'+opts.comment
else:
comment_part = ''
tempconcat = opts.gan_type+option_part+comment_part
print( 'models and loss plot -> ' + os.path.join( opts.save_dir, opts.dataset, tempconcat ) )
print( 'results -> ' + os.path.join( opts.result_dir, opts.dataset, tempconcat ) )
# --epoch
try:
assert opts.epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
# --batch_size
try:
assert opts.batch_size >= 1
except:
print('batch size must be larger than or equal to one')
print( opts )
return opts
"""main"""
def main():
#parse arguments
opts = parse_args()
if opts is None:
print("There is no opts!!")
exit()
if opts.gan_type == 'GAN':
gan = GAN(opts)
elif opts.gan_type == 'denseGAN':
gan = denseGAN(opts)
elif opts.gan_type == 'ACGAN':
gan = ACGAN(opts)
elif opts.gan_type == 'EEG_GAN':
gan = EEG_GAN(opts)
elif opts.gan_type == 'CGAN':
gan = CGAN(opts)
elif opts.gan_type == 'EEG_GAN_SN':
gan = EEG_GAN_SN(opts)
elif opts.gan_type == 'EEG_EncGAN':
gan = EEG_EncGAN(opts)
elif opts.gan_type == 'EEG_Encoder':
gan = EEG_Encoder(opts)
elif opts.gan_type == 'EEG_GRU_GAN':
gan = EEG_GRU_GAN(opts)
elif opts.gan_type == 'RNN':
gan = RNN(opts)
else:
raise Exception("[!] There is no option for " + opts.gan_type)
if opts.type == 'train':
gan.train()
print("[*] Training finished")
elif opts.type == 'test':
gan.test()
print("[*] Test finished")
if __name__ == '__main__':
main()