forked from msgboxio/ike
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtkm.go
268 lines (238 loc) · 7.61 KB
/
tkm.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
package ike
import (
"crypto/rand"
"math/big"
"github.com/msgboxio/ike/crypto"
"github.com/pkg/errors"
)
// ike-seperation.pdf
// 2.1.2 IKE_SA_INIT
// tkm creates KEi, Ni
// get SKEYSEED
// derive SK_e (encryption) and SK_a (authentication)
// 2.1.3 IKE_AUTH
// tkm creates SK, AUTH
// 2.1.4 CREATE_CHILD_SA
// tkm creates SK, Ni, [KEi]
type Tkm struct {
suite *crypto.CipherSuite
espSuite *crypto.CipherSuite
Nr, Ni *big.Int
dhPrivate, DhPublic *big.Int
DhShared *big.Int
skD []byte // further keying material for child sa
skPi, skPr []byte // used when generating an AUTH
skAi, skAr []byte // integrity protection keys
skEi, skEr []byte // encryption keys
}
var errMissingCryptoKeys = errors.New("Missing crypto keys")
func NewTkm(cfg *Config, ni *big.Int) (*Tkm, error) {
suite, err := crypto.NewCipherSuite(cfg.ProposalIke)
if err != nil {
return nil, err
}
espSuite, err := crypto.NewCipherSuite(cfg.ProposalEsp)
if err != nil {
return nil, err
}
if ni != nil {
return newTkmResponder(suite, espSuite, ni)
}
return newTkmInitiator(suite, espSuite)
}
func newTkmInitiator(suite, espSuite *crypto.CipherSuite) (tkm *Tkm, err error) {
if err = suite.CheckIkeTransforms(); err != nil {
return
}
if err = espSuite.CheckEspTransforms(); err != nil {
return
}
// standard says nonce should be at least half of size of negotiated prf
ni, err := createNonce(suite.Prf.Length * 8)
if err != nil {
return
}
tkm = &Tkm{
suite: suite,
espSuite: espSuite,
Ni: ni,
}
// for sending public key
err = tkm.dhCreate()
return
}
func newTkmResponder(suite, espSuite *crypto.CipherSuite, ni *big.Int) (tkm *Tkm, err error) {
if err = suite.CheckIkeTransforms(); err != nil {
return
}
if err = espSuite.CheckEspTransforms(); err != nil {
return
}
// at least 128 bits & at least half the key size of the negotiated prf
bitLen := ni.BitLen()
if bitLen < 128 || bitLen < (suite.Prf.Length*8)/2 {
err = errors.New("Proposed nonce is too small")
return
}
nr, err := createNonce(bitLen)
if err != nil {
return
}
tkm = &Tkm{
suite: suite,
espSuite: espSuite,
Ni: ni,
Nr: nr,
}
err = tkm.dhCreate()
return
}
// 4.1.2 creation of ike sa
func createNonce(bits int) (no *big.Int, err error) {
return rand.Prime(rand.Reader, bits)
}
func (t *Tkm) dhCreate() (err error) {
t.dhPrivate, t.DhPublic, err = t.suite.DhGroup.Generate(rand.Reader)
return
}
// DhGenerateKey creates & stores the dh key
// upon receipt of peers resp, a dh shared secret can be calculated
func (t *Tkm) DhGenerateKey(theirPublic *big.Int) (err error) {
t.DhShared, err = t.suite.DhGroup.DiffieHellman(theirPublic, t.dhPrivate)
return
}
func (t *Tkm) prfplus(key, data []byte, bits int) []byte {
var ret, prev []byte
var round = 1
for len(ret) < bits {
prev = t.suite.Prf.Apply(key, append(append(prev, data...), byte(round)))
ret = append(ret, prev...)
round++
}
return ret[:bits]
}
func (t *Tkm) skeySeedInitial() []byte {
// SKEYSEED = prf(Ni | Nr, g^ir)
return t.suite.Prf.Apply(append(t.Ni.Bytes(), t.Nr.Bytes()...), t.DhShared.Bytes())
}
func (t *Tkm) skeySeedRekey(old_SK_D []byte) []byte {
// SKEYSEED = prf(SK_d (old), g^ir (new) | Ni | Nr)
return t.suite.Prf.Apply(old_SK_D, append(t.DhShared.Bytes(), append(t.Ni.Bytes(), t.Nr.Bytes()...)...))
}
// IkeSaKeys creates ike sa keys
func (t *Tkm) IkeSaKeys(spiI, spiR []byte, old_skD []byte) {
// fmt.Printf("key inputs: \nni:\n%snr:\n%sshared:\n%sspii:\n%sspir:\n%s",
// hex.Dump(t.Ni.Bytes()), hex.Dump(t.Nr.Bytes()), hex.Dump(t.DhShared.Bytes()),
// hex.Dump(spiI), hex.Dump(spiR))
SKEYSEED := []byte{}
if len(old_skD) == 0 {
SKEYSEED = t.skeySeedInitial()
} else {
SKEYSEED = t.skeySeedRekey(old_skD)
}
kmLen := 3*t.suite.Prf.Length + 2*t.suite.KeyLen + 2*t.suite.MacTruncLen
// KEYMAT = = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)
KEYMAT := t.prfplus(SKEYSEED,
append(append(t.Ni.Bytes(), t.Nr.Bytes()...), append(spiI, spiR...)...),
kmLen)
// SK_d, SK_pi, and SK_pr MUST be prfLength
offset := t.suite.Prf.Length
t.skD = append([]byte{}, KEYMAT[0:offset]...)
t.skAi = append([]byte{}, KEYMAT[offset:offset+t.suite.MacTruncLen]...)
offset += t.suite.MacTruncLen
t.skAr = append([]byte{}, KEYMAT[offset:offset+t.suite.MacTruncLen]...)
offset += t.suite.MacTruncLen
t.skEi = append([]byte{}, KEYMAT[offset:offset+t.suite.KeyLen]...)
offset += t.suite.KeyLen
t.skEr = append([]byte{}, KEYMAT[offset:offset+t.suite.KeyLen]...)
offset += t.suite.KeyLen
t.skPi = append([]byte{}, KEYMAT[offset:offset+t.suite.Prf.Length]...)
offset += t.suite.Prf.Length
t.skPr = append([]byte{}, KEYMAT[offset:offset+t.suite.Prf.Length]...)
// fmt.Printf("keymat length %d\n", len(KEYMAT))
// fmt.Printf("skD:\n%sskAi:\n%sskAr:\n%sskEi:\n%sskEr:\n%sskPi:\n%sskPr:\n%s",
// hex.Dump(t.skD),
// hex.Dump(t.skAi),
// hex.Dump(t.skAr),
// hex.Dump(t.skEi),
// hex.Dump(t.skEr),
// hex.Dump(t.skPi),
// hex.Dump(t.skPr))
}
func (t *Tkm) CryptoOverhead(b []byte) int {
return t.suite.Overhead(b)
}
// MAC-then-decrypt
func (t *Tkm) VerifyDecrypt(ike []byte, forInitiator bool) (dec []byte, err error) {
skA, skE := t.skAi, t.skEi
if forInitiator {
skA, skE = t.skAr, t.skEr
}
if skA == nil || skE == nil {
return nil, errors.Wrap(errMissingCryptoKeys, "Decrypting")
}
dec, err = t.suite.VerifyDecrypt(ike, skA, skE)
return
}
// encrypt-then-MAC
func (t *Tkm) EncryptMac(ike []byte, forInitiator bool) (b []byte, err error) {
skA, skE := t.skAr, t.skEr
if forInitiator {
skA, skE = t.skAi, t.skEi
}
if skA == nil || skE == nil {
return nil, errors.Wrap(errMissingCryptoKeys, "Encrypting")
}
b, err = t.suite.EncryptMac(ike, skA, skE)
return
}
// IpsecSaKeys generates & returns Ipsec Sa keys
func (t *Tkm) IpsecSaKeys(ni, nr, dhShared *big.Int) (espEi, espAi, espEr, espAr []byte) {
kmLen := 2*t.espSuite.KeyLen + 2*t.espSuite.MacTruncLen
// KEYMAT = prf+(SK_d, Ni | Nr)
KEYMAT := t.prfplus(t.skD, append(ni.Bytes(), nr.Bytes()...), kmLen)
// KEYMAT = prf+(SK_d, g^ir (new) | Ni | Nr)
if dhShared != nil {
KEYMAT = t.prfplus(t.skD,
append(dhShared.Bytes(), append(ni.Bytes(), nr.Bytes()...)...), kmLen)
}
offset := t.espSuite.KeyLen
espEi = append([]byte{}, KEYMAT[0:offset]...)
espAi = append([]byte{}, KEYMAT[offset:offset+t.espSuite.MacTruncLen]...)
offset += t.espSuite.MacTruncLen
espEr = append([]byte{}, KEYMAT[offset:offset+t.espSuite.KeyLen]...)
offset += t.espSuite.KeyLen
espAr = append([]byte{}, KEYMAT[offset:offset+t.espSuite.MacTruncLen]...)
// fmt.Printf("ESP keys :\nEi:\n%sAi:\n%sEr:\n%sAr\n%s",
// hex.Dump(espEi),
// hex.Dump(espAi),
// hex.Dump(espEr),
// hex.Dump(espAr))
return
}
// SignB gets signed data from tkm
// section 2.15
// For the responder, the octets to be signed
// start with the first octet of the first SPI in the
// header of the second message (IKE_SA_INIT response) and end with the
// last octet of the last payload in the second message. => initIRB
// Appended to this (for the purposes of computing the signature) are the
// initiator's nonce Ni (just the value, not the payload containing it),
// and the value prf(SK_pr, IDr')
// so signB :=
// responder: initRB | Ni | prf(SK_pr, IDr')
// initiator: initIB | Nr | prf(SK_pi, IDi')
// this method can be used by signer & verifier
func (t *Tkm) SignB(initB []byte, id []byte, forInitiator bool) []byte {
// ResponderSignedOctets = RealMessage2 | NonceIData | MACedIDForR
// InitiatorSignedOctets = RealMessage1 | NonceRData | MACedIDForI
key := t.skPr
nonce := t.Ni
if forInitiator {
key = t.skPi
nonce = t.Nr
}
macedID := t.suite.Prf.Apply(key, id)
signB := append(append(initB, nonce.Bytes()...), macedID...)
return signB
}