-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathipopt_nlpsol.py
124 lines (95 loc) · 2.61 KB
/
ipopt_nlpsol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import casadi as ca
from numpy import sin, cos, tan, pi
pos = ca.MX.sym('pos',2)
theta = ca.MX.sym('theta')
delta = ca.MX.sym('delta')
V = ca.MX.sym('V')
# States
x = ca.vertcat(pos,theta)
# Controls
u = ca.vertcat(delta,V)
L = 1
# ODE rhs
# Bicycle model
# (S. LaValle. Planning Algorithms. Cambridge University Press, 2006, pp. 724–725.)
ode = ca.vertcat(V*ca.vertcat(cos(theta),sin(theta)),V/L*tan(delta))
# Discretize system
dt = ca.MX.sym("dt")
sys = {}
sys["x"] = x
sys["u"] = u
sys["p"] = dt
sys["ode"] = ode*dt # Time scaling
intg = ca.integrator('intg','rk',sys,0,1,{"simplify":True, "number_of_finite_elements": 4})
F = ca.Function('F',[x,u,dt],[intg(x0=x,u=u,p=dt)["xf"]],["x","u","dt"],["xnext"])
nx = x.numel()
nu = u.numel()
f = 0 # Objective
x = [] # List of decision variable symbols
lbx = [];ubx = [] # Simple bounds
x0 = [] # Initial value
g = [] # Constraints list
lbg = [];ubg = [] # Constraint bounds
p = [] # Parameters
p_val = [] # Parameter values
N = 20
T0 = 10
# Create decision variable for T and store it
T = ca.MX.sym("T")
x.append(T)
x0.append(T0)
lbx.append(0);ubx.append(ca.inf);
dt = T/N
X = [ca.MX.sym("X",nx) for i in range(N+1)]
x += X
for k in range(N+1):
x0.append(ca.vertcat(0,k*T0/N,pi/2))
lbx.append(-ca.DM.inf(nx,1));ubx.append(ca.DM.inf(nx,1));
U = [ca.MX.sym("U",nu) for i in range(N)]
x += U
for k in range(N):
x0.append(ca.vertcat(0,1))
lbx.append(-pi/6);ubx.append(pi/6) # -pi/6 <= delta<= pi/6
lbx.append(0);ubx.append(1) # 0 <= V<=1
# Round obstacle
pos0 = ca.vertcat(0.2,5)
r0 = 1
X0 = ca.MX.sym("X0",nx)
p.append(X0)
p_val.append(ca.vertcat(0,0,pi/2))
f = T # Time Optimal objective
for k in range(N):
# Multiple shooting gap-closing constraint
g.append(X[k+1]-F(X[k],U[k],dt))
lbg.append(ca.DM.zeros(nx,1))
ubg.append(ca.DM.zeros(nx,1))
if k==0:
# Initial constraints
g.append(X[0]-X0)
lbg.append(ca.DM.zeros(nx,1))
ubg.append(ca.DM.zeros(nx,1))
# Obstacle avoidance
pos = X[k][:2]
g.append(ca.sumsqr(pos-pos0))
lbg.append(r0**2);ubg.append(ca.inf)
if k==N-1:
# Final constraints
g.append(X[-1][:2])
lbg.append(ca.vertcat(0,10));ubg.append(ca.vertcat(0,10))
# Add some regularization
for k in range(N+1):
f += ca.sumsqr(X[k][0])
# Solve the problem
nlp = {}
nlp["f"] = f
nlp["g"] = ca.vcat(g)
nlp["x"] = ca.vcat(x)
nlp["p"] = ca.vcat(p)
solver = ca.nlpsol('solver',"ipopt",nlp,{"expand":True})
res = solver(x0 = ca.vcat(x0),
lbg = ca.vcat(lbg),
ubg = ca.vcat(ubg),
lbx = ca.vcat(lbx),
ubx = ca.vcat(ubx),
p = ca.vcat(p_val)
)