-
Notifications
You must be signed in to change notification settings - Fork 178
/
Copy pathtrain.py
220 lines (175 loc) · 7.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Code for MedT
import torch
import lib
import argparse
import torch
import torchvision
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import save_image
import torch.nn.functional as F
import os
import matplotlib.pyplot as plt
import torch.utils.data as data
from PIL import Image
import numpy as np
from torchvision.utils import save_image
import torch
import torch.nn.init as init
from utils import JointTransform2D, ImageToImage2D, Image2D
from metrics import jaccard_index, f1_score, LogNLLLoss,classwise_f1
from utils import chk_mkdir, Logger, MetricList
import cv2
from functools import partial
from random import randint
import timeit
parser = argparse.ArgumentParser(description='MedT')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('--epochs', default=400, type=int, metavar='N',
help='number of total epochs to run(default: 400)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch_size', default=1, type=int,
metavar='N', help='batch size (default: 1)')
parser.add_argument('--learning_rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate (default: 0.001)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-5, type=float,
metavar='W', help='weight decay (default: 1e-5)')
parser.add_argument('--train_dataset', required=True, type=str)
parser.add_argument('--val_dataset', type=str)
parser.add_argument('--save_freq', type=int,default = 10)
parser.add_argument('--modelname', default='MedT', type=str,
help='type of model')
parser.add_argument('--cuda', default="on", type=str,
help='switch on/off cuda option (default: off)')
parser.add_argument('--aug', default='off', type=str,
help='turn on img augmentation (default: False)')
parser.add_argument('--load', default='default', type=str,
help='load a pretrained model')
parser.add_argument('--save', default='default', type=str,
help='save the model')
parser.add_argument('--direc', default='./medt', type=str,
help='directory to save')
parser.add_argument('--crop', type=int, default=None)
parser.add_argument('--imgsize', type=int, default=None)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--gray', default='no', type=str)
args = parser.parse_args()
gray_ = args.gray
aug = args.aug
direc = args.direc
modelname = args.modelname
imgsize = args.imgsize
if gray_ == "yes":
from utils_gray import JointTransform2D, ImageToImage2D, Image2D
imgchant = 1
else:
from utils import JointTransform2D, ImageToImage2D, Image2D
imgchant = 3
if args.crop is not None:
crop = (args.crop, args.crop)
else:
crop = None
tf_train = JointTransform2D(crop=crop, p_flip=0.5, color_jitter_params=None, long_mask=True)
tf_val = JointTransform2D(crop=crop, p_flip=0, color_jitter_params=None, long_mask=True)
train_dataset = ImageToImage2D(args.train_dataset, tf_train)
val_dataset = ImageToImage2D(args.val_dataset, tf_val)
predict_dataset = Image2D(args.val_dataset)
dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
valloader = DataLoader(val_dataset, 1, shuffle=True)
device = torch.device("cuda")
if modelname == "axialunet":
model = lib.models.axialunet(img_size = imgsize, imgchan = imgchant)
elif modelname == "MedT":
model = lib.models.axialnet.MedT(img_size = imgsize, imgchan = imgchant)
elif modelname == "gatedaxialunet":
model = lib.models.axialnet.gated(img_size = imgsize, imgchan = imgchant)
elif modelname == "logo":
model = lib.models.axialnet.logo(img_size = imgsize, imgchan = imgchant)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model,device_ids=[0,1]).cuda()
model.to(device)
criterion = LogNLLLoss()
optimizer = torch.optim.Adam(list(model.parameters()), lr=args.learning_rate,
weight_decay=1e-5)
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Total_params: {}".format(pytorch_total_params))
seed = 3000
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.set_deterministic(True)
# random.seed(seed)
for epoch in range(args.epochs):
epoch_running_loss = 0
for batch_idx, (X_batch, y_batch, *rest) in enumerate(dataloader):
X_batch = Variable(X_batch.to(device ='cuda'))
y_batch = Variable(y_batch.to(device='cuda'))
# ===================forward=====================
output = model(X_batch)
tmp2 = y_batch.detach().cpu().numpy()
tmp = output.detach().cpu().numpy()
tmp[tmp>=0.5] = 1
tmp[tmp<0.5] = 0
tmp2[tmp2>0] = 1
tmp2[tmp2<=0] = 0
tmp2 = tmp2.astype(int)
tmp = tmp.astype(int)
yHaT = tmp
yval = tmp2
loss = criterion(output, y_batch)
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_running_loss += loss.item()
# ===================log========================
print('epoch [{}/{}], loss:{:.4f}'
.format(epoch, args.epochs, epoch_running_loss/(batch_idx+1)))
if epoch == 10:
for param in model.parameters():
param.requires_grad =True
if (epoch % args.save_freq) ==0:
for batch_idx, (X_batch, y_batch, *rest) in enumerate(valloader):
# print(batch_idx)
if isinstance(rest[0][0], str):
image_filename = rest[0][0]
else:
image_filename = '%s.png' % str(batch_idx + 1).zfill(3)
X_batch = Variable(X_batch.to(device='cuda'))
y_batch = Variable(y_batch.to(device='cuda'))
# start = timeit.default_timer()
y_out = model(X_batch)
# stop = timeit.default_timer()
# print('Time: ', stop - start)
tmp2 = y_batch.detach().cpu().numpy()
tmp = y_out.detach().cpu().numpy()
tmp[tmp>=0.5] = 1
tmp[tmp<0.5] = 0
tmp2[tmp2>0] = 1
tmp2[tmp2<=0] = 0
tmp2 = tmp2.astype(int)
tmp = tmp.astype(int)
# print(np.unique(tmp2))
yHaT = tmp
yval = tmp2
epsilon = 1e-20
del X_batch, y_batch,tmp,tmp2, y_out
yHaT[yHaT==1] =255
yval[yval==1] =255
fulldir = direc+"/{}/".format(epoch)
# print(fulldir+image_filename)
if not os.path.isdir(fulldir):
os.makedirs(fulldir)
cv2.imwrite(fulldir+image_filename, yHaT[0,1,:,:])
# cv2.imwrite(fulldir+'/gt_{}.png'.format(count), yval[0,:,:])
fulldir = direc+"/{}/".format(epoch)
torch.save(model.state_dict(), fulldir+args.modelname+".pth")
torch.save(model.state_dict(), direc+"final_model.pth")