-
Notifications
You must be signed in to change notification settings - Fork 66
/
train.py
executable file
·70 lines (59 loc) · 2.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import time
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from util import html
import copy
from test_function import test_func
import os
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = 0
opt.results_dir = os.path.join(os.path.dirname(opt.checkpoints_dir), 'results')
web_dir = os.path.join(opt.results_dir, opt.name)
webpage = html.HTML(web_dir, 'Experiment = %s' % (opt.name))
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
if epoch == 1:
save_data = data
else:
save_data = save_data
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.display_freq == 0:
print("Saving images......")
model.set_input(save_data)
model.forward()
visuals, start_points = model.get_current_visuals()
visualizer.display_current_results(visuals, start_points, epoch)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
# if opt.display_id > 0:
# visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save('latest')
model.save(epoch)
test_func(opt, webpage, epoch=str(epoch))
# print('End of epoch %d / %d \t Time Taken: %d sec' %
# (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
if epoch > opt.niter:
model.update_learning_rate()