-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdebug.py
81 lines (81 loc) · 1.67 KB
/
debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
model = dict(
type='PAN_PP',
backbone=dict(
type='resnet18',
pretrained=True
),
neck=dict(
type='FPEM_v2',
in_channels=(64, 128, 256, 512),
out_channels=128
),
detection_head=dict(
type='PAN_PP_DetHead',
in_channels=512,
hidden_dim=128,
num_classes=6,
loss_text=dict(
type='DiceLoss',
loss_weight=1.0
),
loss_kernel=dict(
type='DiceLoss',
loss_weight=0.5
),
loss_emb=dict(
type='EmbLoss_v2',
feature_dim=4,
loss_weight=0.25
),
use_coordconv=False,
),
recognition_head=dict(
type='PAN_PP_RecHead',
input_dim=512,
hidden_dim=128,
feature_size=(8, 32)
)
)
data = dict(
batch_size=2,
train=dict(
type='PAN_PP_Joint_Train',
split='train',
is_transform=True,
img_size=736,
short_size=736,
kernel_scale=0.5,
read_type='pil',
with_rec=True
),
test=dict(
type='PAN_PP_IC15',
split='test',
short_size=736,
read_type='pil',
with_rec=True
)
)
train_cfg = dict(
lr=1e-3,
schedule='polylr',
epoch=3,
optimizer='Adam'
)
test_cfg = dict(
min_score=0.8,
min_area=260,
min_kernel_area=2.6,
scale=4,
bbox_type='rect',
result_path='outputs/submit_ic15_rec.zip',
rec_post_process=dict(
len_thres=3,
score_thres=0.95,
unalpha_score_thres=0.9,
ignore_score_thres=0.93,
edit_dist_thres=2,
voc_type=None,
voc_path=None
)
)