-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_graph_classification.py
176 lines (158 loc) · 6.41 KB
/
run_graph_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""
Test rewired GNN performance on graph classifiation benchmarks.
"""
from attrdict import AttrDict
from torch_geometric.datasets import TUDataset
from torch_geometric.utils import to_networkx, from_networkx, to_dense_adj
from experiments.graph_classification import Experiment
import torch
import numpy as np
import pandas as pd
from hyperparams import get_args_from_input
from preprocessing import rewiring, sdrf, fosr, digl, panda
import os
import wandb
import random
def init_seed(seed):
'''
Disable cudnn to maximize reproducibility
'''
torch.cuda.cudnn_enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
DETERMINISTIC = False
SEED = 42
if DETERMINISTIC:
init_seed(SEED)
mutag = list(TUDataset(root="data", name="MUTAG"))
enzymes = list(TUDataset(root="data", name="ENZYMES"))
proteins = list(TUDataset(root="data", name="PROTEINS"))
collab = list(TUDataset(root="data", name="COLLAB"))
imdb = list(TUDataset(root="data", name="IMDB-BINARY"))
reddit = list(TUDataset(root="data", name="REDDIT-BINARY"))
datasets = {"reddit": reddit, "imdb": imdb, "mutag": mutag, "enzymes": enzymes, "proteins": proteins, "collab": collab}
for key in datasets:
if key in ["reddit", "imdb", "collab"]:
for graph in datasets[key]:
n = graph.num_nodes
graph.x = torch.ones((n,1))
def average_spectral_gap(dataset):
# computes the average spectral gap out of all graphs in a dataset
spectral_gaps = []
for graph in dataset:
G = to_networkx(graph, to_undirected=True)
spectral_gap = rewiring.spectral_gap(G)
spectral_gaps.append(spectral_gap)
return sum(spectral_gaps) / len(spectral_gaps)
def log_to_file(message, filename="results/graph_classification.txt"):
print(message)
file = open(filename, "a")
file.write(message)
file.close()
hyperparams = {
"mutag": AttrDict({"output_dim": 2}),
"enzymes": AttrDict({"output_dim": 6}),
"proteins": AttrDict({"output_dim": 2}),
"collab": AttrDict({"output_dim": 3}),
"imdb": AttrDict({"output_dim": 2}),
"reddit": AttrDict({"output_dim": 2})
}
result_list = []
args = get_args_from_input()
if args.dataset:
# restricts to just the given dataset if this mode is chosen
name = args.dataset
datasets = {name: datasets[name]}
for key in datasets:
args += hyperparams[key]
train_accuracies = []
validation_accuracies = []
test_accuracies = []
energies = []
print(f"TESTING: {key} ({args.rewiring})")
dataset = datasets[key]
if args.rewiring == "fosr":
for i in range(len(dataset)):
edge_index, edge_type, _ = fosr.edge_rewire(dataset[i].edge_index.numpy(), num_iterations=args.num_iterations)
dataset[i].edge_index = torch.tensor(edge_index)
dataset[i].edge_type = torch.tensor(edge_type)
elif args.rewiring == "sdrf":
for i in range(len(dataset)):
dataset[i].edge_index, dataset[i].edge_type = sdrf.sdrf(dataset[i], loops=args.num_iterations, remove_edges=False, is_undirected=True)
elif args.rewiring == "digl":
for i in range(len(dataset)):
dataset[i].edge_index = digl.rewire(dataset[i], alpha=0.1, eps=0.05)
m = dataset[i].edge_index.shape[1]
dataset[i].edge_type = torch.tensor(np.zeros(m, dtype=np.int64))
elif args.rewiring == "panda" and args.centrality != "degree_simple":
for i in range(len(dataset)):
dataset[i].centrality = panda.measure_centrality(dataset[i], centrality_measure=args.centrality,
index=i, save_path=f"centrality/{key}")
else:
pass
if args.wandb:
os.environ["WANDB_MODE"] = "run"
else:
os.environ["WANDB_MODE"] = "disabled"
if args.wandb:
if args.wandb_run_name != None:
wandb_run = wandb.init(entity=args.wandb_entity, project=args.wandb_project, config=args, allow_val_change=True, name=args.wandb_run_name)
else:
wandb_run = wandb.init(entity=args.wandb_entity, project=args.wandb_project, config=args, allow_val_change=True)
args = wandb.config
wandb.config.update(args)
wandb.define_metric("epoch_step") # Customize axes - https://docs.wandb.ai/guides/track/log
for trial in range(args.num_trials):
train_acc, validation_acc, test_acc, energy = Experiment(args=args, dataset=dataset).run()
train_accuracies.append(train_acc)
validation_accuracies.append(validation_acc)
test_accuracies.append(test_acc)
energies.append(energy)
print("trial:", trial)
print("test acc:", test_acc)
train_mean = 100 * np.mean(train_accuracies)
val_mean = 100 * np.mean(validation_accuracies)
test_mean = 100 * np.mean(test_accuracies)
energy_mean = 100 * np.mean(energies)
train_ci = 200 * np.std(train_accuracies)/(args.num_trials ** 0.5)
val_ci = 200 * np.std(validation_accuracies)/(args.num_trials ** 0.5)
test_ci = 200 * np.std(test_accuracies)/(args.num_trials ** 0.5)
energy_ci = 200 * np.std(energies)/(args.num_trials ** 0.5)
if not args.wandb:
if args.rewiring != "none":
log_to_file(f"RESULTS FOR {key} ({args.rewiring}), {args.num_iterations} ITERATIONS:\n")
log_to_file(f"average acc: {test_mean}\n")
log_to_file(f"plus/minus: {test_ci}\n\n")
else:
if args.rewiring != "none":
print(f"RESULTS FOR {key} ({args.rewiring}), {args.num_iterations} ITERATIONS:\n")
print(f"average acc: {test_mean}\n")
print(f"plus/minus: {test_ci}\n\n")
results = {
"dataset": key,
"rewiring": args.rewiring,
"layer_type": args.layer_type,
"test_mean": test_mean,
"test_ci": test_ci,
"val_mean": val_mean,
"val_ci": val_ci,
"train_mean": train_mean,
"train_ci": train_ci,
"energy_mean": energy_mean,
"energy_ci": energy_ci
}
result_list.append(results)
if args.wandb:
wandb.log(results)
df = pd.DataFrame(result_list)
if args.wandb:
metric_table = wandb.Table(dataframe=df)
wandb_run.log({"metric_table": metric_table})
wandb_run.finish()
else:
with open('results/graph_classification_fa.csv', 'a') as f:
df.to_csv(f, mode='a', header=f.tell()==0)