forked from tanglizhe1105/plda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sampler.cc
169 lines (148 loc) · 5.86 KB
/
sampler.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright 2008 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <math.h>
#include <stdlib.h>
#include "sampler.h"
#include "document.h"
#include "model.h"
namespace learning_lda {
LDASampler::LDASampler(double alpha,
double beta,
LDAModel* model,
LDAAccumulativeModel* accum_model)
: alpha_(alpha), beta_(beta), model_(model), accum_model_(accum_model) {
CHECK_LT(0.0, alpha);
CHECK_LT(0.0, beta);
CHECK(model != NULL);
}
void LDASampler::InitModelGivenTopics(const LDACorpus& corpus) {
for (list<LDADocument*>::const_iterator iter = corpus.begin();
iter != corpus.end();
++iter) {
LDADocument* document = *iter;
for (LDADocument::WordOccurrenceIterator iter2(document);
!iter2.Done();
iter2.Next()) {
model_->IncrementTopic(iter2.Word(), iter2.Topic(), 1);
}
}
}
void LDASampler::DoIteration(LDACorpus* corpus,
bool train_model,
bool burn_in) {
for (list<LDADocument*>::iterator iter = corpus->begin();
iter != corpus->end();
++iter) {
SampleNewTopicsForDocument(*iter, train_model);
}
if (accum_model_ != NULL && train_model && !burn_in) {
accum_model_->AccumulateModel(*model_);
}
}
void LDASampler::SampleNewTopicsForDocument(LDADocument* document,
bool update_model) {
for (LDADocument::WordOccurrenceIterator iterator(document);
!iterator.Done();
iterator.Next()) {
// This is a (non-normalized) probability distribution from which we will
// select the new topic for the current word occurrence.
vector<double> new_topic_distribution;
GenerateTopicDistributionForWord(*document,
iterator.Word(),
iterator.Topic(),
update_model,
&new_topic_distribution);
int new_topic = GetAccumulativeSample(new_topic_distribution);
// Update document and model parameters with the new topic.
if (update_model) {
model_->ReassignTopic(
iterator.Word(), iterator.Topic(), new_topic, 1);
}
iterator.SetTopic(new_topic);
}
}
void LDASampler::GenerateTopicDistributionForWord(
const LDADocument& document,
int word,
int current_word_topic,
bool train_model,
vector<double>* distribution) const {
int num_topics = model_->num_topics();
int num_words = model_->num_words();
distribution->clear();
distribution->reserve(num_topics);
const TopicCountDistribution& word_distribution =
model_->GetWordTopicDistribution(word);
for (int k = 0; k < num_topics; ++k) {
// We will need to temporarily unassign the word from its old topic, which
// we accomplish by decrementing the appropriate counts by 1.
int current_topic_adjustment = (train_model && k == current_word_topic) ? -1 : 0;
double topic_word_factor = word_distribution[k] + current_topic_adjustment;
double global_topic_factor =
model_->GetGlobalTopicDistribution()[k] + current_topic_adjustment;
double document_topic_factor =
document.topic_distribution()[k] + current_topic_adjustment;
distribution->push_back(
(topic_word_factor + beta_) *
(document_topic_factor + alpha_) /
(global_topic_factor + num_words * beta_));
}
}
// Compute log P(d) = sum_w log P(w), where P(w) = sum_z P(w|z)P(z|d).
double LDASampler::LogLikelihood(LDADocument* document) const {
const int num_topics(model_->num_topics());
// Compute P(z|d) for the given document and all topics.
const vector<int64>& document_topic_cooccurrences(
document->topic_distribution());
CHECK_EQ(num_topics, document_topic_cooccurrences.size());
int64 document_length = 0;
for (int t = 0; t < num_topics; ++t) {
document_length += document_topic_cooccurrences[t];
}
vector<double> prob_topic_given_document(num_topics);
for (int t = 0; t < num_topics; ++t) {
prob_topic_given_document[t] =
(document_topic_cooccurrences[t] + alpha_) /
(document_length + alpha_ * num_topics);
}
// Get global topic occurrences, which will be used compute P(w|z).
TopicCountDistribution global_topic_occurrences(
model_->GetGlobalTopicDistribution());
double log_likelihood = 0.0;
// A document's likelihood is the product of its words' likelihoods. Compute
// the likelihood for every word and sum the logs.
for (LDADocument::WordOccurrenceIterator iterator(document);
!iterator.Done();
iterator.Next()) {
// Get topic_count_distribution of the current word, which will be
// used to Compute P(w|z).
TopicCountDistribution word_topic_cooccurrences(
model_->GetWordTopicDistribution(iterator.Word()));
// Comput P(w|z).
vector<double> prob_word_given_topic(num_topics);
for (int t = 0; t < num_topics; ++t) {
prob_word_given_topic[t] =
(word_topic_cooccurrences[t] + beta_) /
(global_topic_occurrences[t] + model_->num_words() * beta_);
}
// Compute P(w) = sum_z P(w|z)P(z|d)
double prob_word = 0.0;
for (int t = 0; t < num_topics; ++t) {
prob_word += prob_word_given_topic[t] * prob_topic_given_document[t];
}
log_likelihood += log(prob_word);
}
return log_likelihood;
}
} // namespace learning_lda