forked from tanglizhe1105/plda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cmd_flags.cc
176 lines (167 loc) · 4.74 KB
/
cmd_flags.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Copyright 2008 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "cmd_flags.h"
#include <iostream>
#include <sstream>
namespace learning_lda {
LDACmdLineFlags::LDACmdLineFlags() {
// Assign all flags invalid values, so CheckValidity will enforce
// users provide valid values.
num_topics_ = 0;
alpha_ = -1;
beta_ = -1;
training_data_file_ = "";
inference_data_file_ = "";
inference_result_file_ = "";
model_file_ = "";
burn_in_iterations_ = -1;
total_iterations_ = -1;
compute_likelihood_ = "false";
num_pw_ = 1;
}
void LDACmdLineFlags::ParseCmdFlags(int argc, char** argv) {
for (int i = 1; i < argc; ++i) {
if (0 == strcmp(argv[i], "--num_topics")) {
std::istringstream(argv[i+1]) >> num_topics_;
++i;
} else if (0 == strcmp(argv[i], "--alpha")) {
std::istringstream(argv[i+1]) >> alpha_;
++i;
} else if (0 == strcmp(argv[i], "--beta")) {
std::istringstream(argv[i+1]) >> beta_;
++i;
} else if (0 == strcmp(argv[i], "--training_data_file")) {
training_data_file_ = argv[i+1];
++i;
} else if (0 == strcmp(argv[i], "--model_file")) {
model_file_ = argv[i+1];
++i;
} else if (0 == strcmp(argv[i], "--inference_data_file")) {
inference_data_file_ = argv[i+1];
++i;
} else if (0 == strcmp(argv[i], "--inference_result_file")) {
inference_result_file_ = argv[i+1];
++i;
} else if (0 == strcmp(argv[i], "--burn_in_iterations")) {
std::istringstream(argv[i+1]) >> burn_in_iterations_;
++i;
} else if (0 == strcmp(argv[i], "--total_iterations")) {
std::istringstream(argv[i+1]) >> total_iterations_;
++i;
} else if (0 == strcmp(argv[i], "--compute_likelihood")) {
compute_likelihood_ = argv[i+1];
++i;
} else if(0 == strcmp(argv[i], "--num_pw")) {
std::istringstream(argv[i+1]) >> num_pw_;
++i;
}
}
}
bool LDACmdLineFlags::CheckTrainingValidity() {
bool ret = true;
if (num_topics_ <= 1) {
std::cerr << "num_topics must >= 2.\n";
ret = false;
}
if (alpha_ <= 0) {
std::cerr << "alpha must > 0.\n";
ret = false;
}
if (beta_ <= 0) {
std::cerr << "beta must > 0.\n";
ret = false;
}
if (training_data_file_.empty()) {
std::cerr << "Invalid training_data_file.\n";
ret = false;
}
if (model_file_.empty()) {
std::cerr << "Invalid model_file.\n";
ret = false;
}
if (burn_in_iterations_ < 0) {
std::cerr << "burn_in_iterations must >= 0.\n";
ret = false;
}
if (total_iterations_ <= burn_in_iterations_) {
std::cerr << "total_iterations must > burn_in_iterations.\n";
ret = false;
}
return ret;
}
bool LDACmdLineFlags::CheckParallelTrainingValidity() {
bool ret = true;
if (num_topics_ <= 1) {
std::cerr << "num_topics must >= 2.\n";
ret = false;
}
if (alpha_ <= 0) {
std::cerr << "alpha must > 0.\n";
ret = false;
}
if (beta_ <= 0) {
std::cerr << "beta must > 0.\n";
ret = false;
}
if (training_data_file_.empty()) {
std::cerr << "Invalid training_data_file.\n";
ret = false;
}
if (model_file_.empty()) {
std::cerr << "Invalid model_file.\n";
ret = false;
}
if (total_iterations_ <= 0) {
std::cerr << "total_iterations must > 0.\n";
ret = false;
}
if (compute_likelihood_ != "true" && compute_likelihood_ != "false") {
std::cerr << "compute_likelihood must be true or false.\n";
ret = false;
}
return ret;
}
bool LDACmdLineFlags::CheckInferringValidity() {
bool ret = true;
if (alpha_ <= 0) {
std::cerr << "alpha must > 0.\n";
ret = false;
}
if (beta_ <= 0) {
std::cerr << "beta must > 0.\n";
ret = false;
}
if (inference_data_file_.empty()) {
std::cerr << "Invalid inference_data_file.\n";
ret = false;
}
if (inference_result_file_.empty()) {
std::cerr << "Invalid inference_result_file.\n";
ret = false;
}
if (model_file_.empty()) {
std::cerr << "Invalid model_file.\n";
ret = false;
}
if (burn_in_iterations_ < 0) {
std::cerr << "burn_in_iterations must >= 0.\n";
ret = false;
}
if (total_iterations_ <= burn_in_iterations_) {
std::cerr << "total_iterations must > burn_in_iterations.\n";
ret = false;
}
return ret;
}
} // namespace learning_lda