-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnode.go
245 lines (230 loc) · 5.45 KB
/
node.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
package bit
// A node is a compact radix tree element.
// It behaves like a 256-element array of subnodes, indexed by one byte of the
// element. In fact, only the non-empty subnodes are represented; the bitset
// field stores this set and the subnodes field contains the non-empty subnodes
// in order.
type node struct {
shift uint // how many bits to shift elements
bitset Set256
subnodes []subnode // if shift > 0
}
type subnode struct {
index uint8 // the index in the full 256-element array
sub subber
}
// subber is the interface satisifed by nodes of the tree.
// It is implemented by node, for interior nodes, and Set256, for leaves.
type subber interface {
add(uint64)
remove(uint64) bool // return true if empty
contains(uint64) bool
elements(a []uint64, start, high uint64) int
size() int
memSize() uint64
equalSub(subber) bool
}
func (n *node) newSubber() subber {
if n.shift == 8 {
return &Set256{}
} else {
return &node{shift: n.shift - 8}
}
}
func (n *node) add(e uint64) {
index := uint8(e >> n.shift)
pos, found := n.bitset.Position(index)
if !found {
n.bitset.Add(index)
}
var sub subber
if found {
sub = n.subnodes[pos].sub
} else {
sub = n.newSubber()
newsub := make([]subnode, len(n.subnodes)+1)
copy(newsub, n.subnodes[:pos])
newsub[pos] = subnode{index: index, sub: sub}
copy(newsub[pos+1:], n.subnodes[pos:])
n.subnodes = newsub
}
sub.add(e)
}
func (n *node) remove(e uint64) (empty bool) {
// assert node is not empty
index := uint8(e >> n.shift)
pos, found := n.bitset.Position(index)
if !found {
return false // we weren't empty coming in
}
sub := n.subnodes[pos].sub
if sub.remove(e) {
if len(n.subnodes) == 1 {
// No need to clean up, we're finished.
return true
}
copy(n.subnodes[pos:], n.subnodes[pos+1:])
// TODO: really shrink memory
n.subnodes = n.subnodes[:len(n.subnodes)-1]
n.bitset.Remove(index)
}
return false
}
func (n *node) contains(e uint64) bool {
index := uint8(e >> n.shift)
p, found := n.bitset.Position(index)
if !found {
return false
}
return n.subnodes[p].sub.contains(e)
}
func (n1 *node) equal(n2 *node) bool {
if !n1.bitset.Equal(&n2.bitset) {
return false
}
for i, sn1 := range n1.subnodes {
if !sn1.sub.equalSub(n2.subnodes[i].sub) {
return false
}
}
return true
}
func (n1 *node) equalSub(s subber) bool {
return n1.equal(s.(*node))
}
func (n *node) size() int {
t := 0
for _, s := range n.subnodes {
t += s.sub.size()
}
return t
}
func (n *node) memSize() uint64 {
sz := memSize(*n)
for _, s := range n.subnodes {
sz += memSize(s)
sz += s.sub.memSize()
}
return sz
}
func (n *node) elements(a []uint64, start, high uint64) int {
hi := func(i int) uint64 {
return high | (uint64(n.subnodes[i].index) << n.shift)
}
var total int
si := uint8(start >> n.shift)
p, found := n.bitset.Position(si)
if found {
total = n.subnodes[p].sub.elements(a, start, hi(p))
p++
}
for i := p; i < len(n.subnodes); i++ {
total += n.subnodes[i].sub.elements(a[total:], 0, hi(i))
}
return total
}
// func (c *node) intersect(a, b, *node) {
// // We have to be careful because c might be a or b.
// // TODO: try to reuse c's items slice.
// if a == nil || b == nil {
// c.items = nil
// return
// }
// i, j := 0, 0
// ai := a.items
// bi := b.items
// c.items = nil // if c != a or b, we need to release back to pool?
// for i < len(ai) && j < len(bi) {
// d := ai[i].pos - bi[j].pos
// switch {
// case d < 0:
// i++
// case d > 0:
// j++
// default: // equal
// it := item{pos: pos}
// if ai[i].node != nil {
// node := node{shift: ai[i].node.shift}
// node.intersect(ai[i].node, bi[j].node)
// if !node.Empty() {
// it.node = &node
// c.items = append(c.items, it)
// }
// } else { // ai[i].set != nil
// var bs Set256
// bs.Intersect(ai[i].set, bi[j].set)
// if !bs.Empty() {
// it.set = &bs
// c.items = append(c.items, it)
// }
// }
// }
// }
// // Reconstruct the set from the items.
// c.set.Clear()
// for _, it := range c.items {
// c.set.Add(it.pos)
// }
// }
func intersectNodes(nodes []*node) *node {
var bsets [256]*Set256
for i, n := range nodes {
bsets[i] = &n.bitset
}
var bset Set256
bset.IntersectN(bsets[:len(nodes)])
if bset.Empty() {
return nil
}
// posSet contains the indices of the intersection.
// At this point we know that there is at least one node,
// and none of the nodes are empty.
result := &node{
shift: nodes[0].shift,
bitset: bset,
}
var indices [256]uint8
size := bset.Elements(indices[:], 0)
var subnodes [256]*node
var subsets [256]*Set256
isSets := (nodes[0].shift == 8)
for _, index := range indices[:size] {
for i, n := range nodes {
p, found := n.bitset.Position(index)
if !found {
panic("intersectNodes: index not found")
}
sub := n.subnodes[p].sub
if isSets {
subsets[i] = sub.(*Set256)
} else {
subnodes[i] = sub.(*node)
}
}
var newsub subber
if isSets {
var bs Set256
bs.IntersectN(subsets[:len(nodes)])
if !bs.Empty() {
newsub = &bs
}
} else {
in := intersectNodes(subnodes[:len(nodes)])
if in != nil {
newsub = in
}
}
if newsub != nil {
result.subnodes = append(result.subnodes,
subnode{index: index, sub: newsub})
} else {
// Although all the nodes have an item at this position,
// the intersection of those items is empty.
result.bitset.Remove(index)
}
}
if result.bitset.Empty() {
return nil
}
return result
}