-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
245 lines (215 loc) · 9.07 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os, sys
import pandas as pd
import xarray as xr
sys.path.append("../river-dl")
from gw_stream_temp.getNetworkData import get_NHM_gis_data
from gw_stream_temp.preprocessMODFLOW import compile_model_outputs, make_model_shapefile
from gw_stream_temp.combineNetworkMODFLOW import compile_catchment_discharge, get_catchment_nodes
from gw_stream_temp.preprocess_modpath_data import make_modpath_model
from gw_stream_temp.visualize import plot_by_perlocal
from river_dl.preproc_utils import prep_data
from river_dl.evaluate import combined_metrics
from river_dl.postproc_utils import plot_obs
from river_dl.predict import predict_from_io_data
from river_dl.train import train_model
from river_dl import loss_functions as lf
from river_dl.gw_utils import prep_annual_signal_data, calc_pred_ann_temp,calc_gw_metrics
modelName = config["modelName"]
flowModelName = config["flowModelName"]
modelDir = config['modelDir']
outDir = config['out_dir']
rasterPath = config['rasterPath']
workingDir = os.getcwd()
loss_function = lf.multitask_rmse(config['lambdas'])
module other_workflow:
snakefile: "../river-dl/Snakefile"
config: config
use rule * from other_workflow as other_*
#this allows us to import all the rules from Snakefile but write a custom train_model_local_or_cpu rule
use rule train_model_local_or_cpu from other_workflow as other_train_model_local_or_cpu with:
output:
""
use rule prep_io_data from other_workflow as other_prep_io_data with:
output:
""
use rule prep_ann_temp from other_workflow as other_prep_ann_temp with:
output:
""
use rule plot_prepped_data from other_workflow as other_plot_prepped_data with:
output:
""
#modify rule all to include the additional gw output files
use rule all from other_workflow as other_all with:
input:
expand("{outdir}/GW_summary.csv",outdir=outDir),
expand("{outdir}/GW_stats_{partition}.csv",
outdir=outDir,
partition=['trn', 'tst','val']
),
expand("{outdir}/{metric_type}_metrics.csv",
outdir=outDir,
metric_type=['overall', 'month', 'reach', 'month_reach'],
),
expand("{outdir}/GW_{model_metric}.png", outdir=outDir, model_metric=['Per_Local','q_all','q_std','q_std_per']),
'{}/{}.mpend'.format(modelDir,flowModelName)
rule get_NHM_data:
output:
directory('data_NHM/GFv1.1.gdb')
run:
get_NHM_gis_data(item='5e29d1a0e4b0a79317cf7f63',filenameLst=['GFv1.1.gdb.zip'], destination='data_NHM')
rule make_model_shapefile:
output:
'{}/modelGrid.shp'.format(outDir)
run:
make_model_shapefile(modelDir,modelName, flowModelName, output[0], rasterPath)
rule get_model_outputs:
output:
'{}/Model_Outputs.csv'.format(outDir)
run:
compile_model_outputs(modelDir,modelName,output[0])
rule create_catchment_dictionaries:
input:
'data_NHM/GFv1.1.gdb',
'{}/modelGrid.shp'.format(outDir),
output:
'{}/local_catch_dict.npy'.format(outDir),
'{}/upstream_catch_dict.npy'.format(outDir),
run:
get_catchment_nodes(input[0], input[1],5070,output[0],output[1])
get_catchment_nodes(gdb = input[0], reach_files = 'nsegment_v1_1', catchment_files = 'nhru_v1_1_simp', networkCode = "NHM", reachIdx = "seg_id_nhm", model_shapefile = input[1],local_out_file = output[0],upstream_out_file = output[1], model_crs=config['model_crs'], network_crs = "ESRI:102039")
rule compile_discharge:
input:
'{}/Model_Outputs.csv'.format(outDir),
'{}/local_catch_dict.npy'.format(outDir),
'{}/upstream_catch_dict.npy'.format(outDir),
output:
'{}/CatchmentDischarge.csv'.format(outDir)
run:
compile_catchment_discharge(input[0],input[1],input[2],output[0])
rule write_modpath_files:
output:
'{}/{}.mpsim'.format(modelDir,flowModelName)
run:
make_modpath_model(modelDir, modelName, flowModelName)
rule run_modpath:
input:
'{}/{}.mpsim'.format(modelDir,flowModelName)
output:
'{}/{}.mpend'.format(modelDir,flowModelName)
shell:
'cd {modelDir}; mpath7 {input}; cd {workingDir}'
def get_segment_list(gw_file_in, pretrain_file_in, seg_col="seg_id_nat"):
gwDF = pd.read_csv(gw_file_in)
ds_pre = xr.open_zarr(pretrain_file_in)
seg_list = [x for x in gwDF[seg_col] if x in ds_pre[seg_col]]
return seg_list
rule prep_io_data:
input:
config['obs_temp'],
config['obs_flow'],
config['sntemp_file'],
config['dist_matrix'],
'{}/CatchmentDischarge.csv'.format(outDir),
output:
"{outdir}/prepped.npz"
run:
prep_data(input[0], input[1], input[2], input[3],
x_vars=config['x_vars'],
catch_prop_file=None,
exclude_file=None,
train_start_date=config['train_start_date'],
train_end_date=config['train_end_date'],
val_start_date=config['val_start_date'],
val_end_date=config['val_end_date'],
test_start_date=config['test_start_date'],
test_end_date=config['test_end_date'],
primary_variable=config['primary_variable'],
log_q=False, segs=get_segment_list(input[4],input[2]),
out_file=output[0])
rule prep_ann_temp:
input:
config['obs_temp'],
config['sntemp_file'],
"{outdir}/prepped.npz",
'{}/CatchmentDischarge.csv'.format(outDir),
output:
"{outdir}/prepped_withGW.npz",
run:
prep_annual_signal_data(input[0], input[1], input[2],
train_start_date=config['train_start_date'],
train_end_date=config['train_end_date'],
val_start_date=config['val_start_date'],
val_end_date=config['val_end_date'],
test_start_date=config['test_start_date'],
test_end_date=config['test_end_date'],
gwVarList = config['gw_vars'],
segs=get_segment_list(input[3],input[1]),
out_file=output[0])
# use "train" if wanting to use GPU on HPC
#rule train:
# input:
# "{outdir}/prepped_withGW.npz"
# output:
# directory("{outdir}/trained_weights/"),
# directory("{outdir}/pretrained_weights/"),
# params:
# # getting the base path to put the training outputs in
# # I omit the last slash (hence '[:-1]' so the split works properly
# run_dir=lambda wildcards, output: os.path.split(output[0][:-1])[0],
# pt_epochs=config['pt_epochs'],
# ft_epochs=config['ft_epochs'],
# lamb=config['lamb'],
# lamb2=config['lamb2'],
# lamb3=config['lamb3'],
# loss = config['loss_type'],
# shell:
# """
# module load analytics cuda10.1/toolkit/10.1.105
# run_training -e /home/jbarclay/.conda/envs/rgcn --no-node-list "python {code_dir}/train_model_cli.py -o {params.run_dir} -i {input[0]} -p {params.pt_epochs} -f {params.ft_epochs} --lamb {params.lamb} --lamb2 {params.lamb2} --lamb3 {params.lamb3} --model rgcn --loss {params.loss} -s 135"
# """
# use "train_model" if wanting to use CPU or local GPU
rule train_model_local_or_cpu:
input:
"{outdir}/prepped_withGW.npz"
output:
directory("{outdir}/trained_weights/"),
directory("{outdir}/pretrained_weights/"),
params:
# getting the base path to put the training outputs in
# I omit the last slash (hence '[:-1]' so the split works properly
run_dir=lambda wildcards, output: os.path.split(output[0][:-1])[0],
run:
train_model(input[0], config['pt_epochs'], config['ft_epochs'], config['hidden_size'],
loss_func=loss_function, out_dir=params.run_dir, model_type='rgcn', num_tasks=2, loss_type=config['loss_type'], lamb2=config['lamb2'],lamb3=config['lamb3'])
rule plot_discharge:
input:
"{outdir}/CatchmentDischarge.csv",
"{outdir}/reach_metrics.csv",
"{outdir}/prepped_withGW.npz",
output:
"{outdir}/GW_{model_metric}.png"
run:
plot_by_perlocal(input[0],input[1],input[2],output[0], plotCol = wildcards.model_metric, axisTitle=wildcards.model_metric)
rule compile_pred_GW_stats:
input:
"{outdir}/prepped_withGW.npz",
"{outdir}/trn_preds.feather",
"{outdir}/tst_preds.feather",
"{outdir}/val_preds.feather"
output:
"{outdir}/GW_stats_trn.csv",
"{outdir}/GW_stats_tst.csv",
"{outdir}/GW_stats_val.csv",
run:
calc_pred_ann_temp(input[0],input[1],input[2], input[3], output[0], output[1], output[2])
rule calc_gw_summary_metrics:
input:
"{outdir}/GW_stats_trn.csv",
"{outdir}/GW_stats_tst.csv",
"{outdir}/GW_stats_val.csv",
output:
"{outdir}/GW_summary.csv",
"{outdir}/GW_scatter.png",
"{outdir}/GW_boxplot.png",
run:
calc_gw_metrics(input[0],input[1],input[2],output[0], output[1], output[2])