-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdemo.py
179 lines (134 loc) · 5.91 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from __future__ import print_function, division
from torch.autograd import Variable
from torchvision.transforms import Normalize
import torch
from model.AerialNet import net_single_stream as net
from image.normalization import NormalizeImageDict, normalize_image
from util.checkboard import createCheckBoard
from geotnf.transformation import GeometricTnf, theta2homogeneous
from geotnf.point_tnf import *
from util.torch_util import print_info
import matplotlib.pyplot as plt
from skimage import io
import cv2
import numpy as np
import warnings
import pickle
from functools import partial
import time
warnings.filterwarnings('ignore')
# torch.cuda.set_device(1) # Using second GPU
### Parameter
feature_extraction_cnn = 'se_resnext101'
model_path = 'trained_models/checkpoint.pth.tar'
source_image_path='failure_cases/source_438.jpg'
target_image_path='failure_cases/target_438.jpg'
### Load models
use_cuda = torch.cuda.is_available()
# Create model
print('Creating CNN model...')
model = net(use_cuda=use_cuda, geometric_model='affine', feature_extraction_cnn=feature_extraction_cnn)
pickle.load = partial(pickle.load, encoding="latin1")
pickle.Unpickler = partial(pickle.Unpickler, encoding="latin1")
# Load trained weights
print('Loading trained model weights...')
checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'])
print("Reloading from--[%s]" % model_path)
### Load and preprocess images
resize = GeometricTnf(out_h=240, out_w=240, use_cuda=False)
normalizeTnf = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def Im2Tensor(image):
image = np.expand_dims(image.transpose((2, 0, 1)), 0)
image = torch.Tensor(image.astype(np.float32) / 255.0)
image_var = Variable(image, requires_grad=False)
if use_cuda:
image_var = image_var.cuda()
return image_var
def preprocess_image(image):
# convert to torch Variable
image = np.expand_dims(image.transpose((2, 0, 1)), 0)
image = torch.Tensor(image.astype(np.float32) / 255.0)
image_var = Variable(image, requires_grad=False)
# Resize image using bilinear sampling with identity affine tnf
image_var = resize(image_var)
# Normalize image
image_var = normalize_image(image_var)
return image_var
source_image = io.imread(source_image_path)
target_image = io.imread(target_image_path)
source_image_var = preprocess_image(source_image)
target_image_var = preprocess_image(target_image)
target_image = np.float32(target_image/255.)
if use_cuda:
source_image_var = source_image_var.cuda()
target_image_var = target_image_var.cuda()
### Create image transformers
affTnf = GeometricTnf(geometric_model='affine', out_h=target_image.shape[0], out_w=target_image.shape[1], use_cuda=use_cuda)
batch = {'source_image': source_image_var, 'target_image':target_image_var}
resizeTgt = GeometricTnf(out_h=target_image.shape[0], out_w=target_image.shape[1], use_cuda = use_cuda)
### Evaluate model
model.eval()
start_time = time.time()
# Evaluate models
"""1st Affine"""
theta_aff, theta_aff_inv = model(batch)
# Calculate theta_aff_2
batch_size = theta_aff.size(0)
theta_aff_inv = theta_aff_inv.view(-1, 2, 3)
theta_aff_inv = torch.cat((theta_aff_inv, (torch.Tensor([0, 0, 1]).to('cuda').unsqueeze(0).unsqueeze(1).expand(batch_size, 1, 3))), 1)
theta_aff_2 = theta_aff_inv.inverse().contiguous().view(-1, 9)[:, :6]
theta_aff_ensemble = (theta_aff + theta_aff_2) / 2 # Ensemble
### Process result
warped_image_aff = affTnf(Im2Tensor(source_image), theta_aff_ensemble.view(-1,2,3))
result_aff_np = warped_image_aff.squeeze(0).transpose(0,1).transpose(1,2).cpu().detach().numpy()
io.imsave('results/aff.jpg', result_aff_np)
"""2nd Affine"""
# Preprocess source_image_2
source_image_2 = normalize_image(resize(warped_image_aff.cpu()))
if use_cuda:
source_image_2 = source_image_2.cuda()
theta_aff_aff, theta_aff_aff_inv = model({'source_image': source_image_2, 'target_image':batch['target_image']})
# Calculate theta_aff_2
batch_size = theta_aff_aff.size(0)
theta_aff_aff_inv = theta_aff_aff_inv.view(-1, 2, 3)
theta_aff_aff_inv = torch.cat((theta_aff_aff_inv, (torch.Tensor([0, 0, 1]).to('cuda').unsqueeze(0).unsqueeze(1).expand(batch_size, 1, 3))), 1)
theta_aff_aff_2 = theta_aff_aff_inv.inverse().contiguous().view(-1, 9)[:, :6]
theta_aff_aff_ensemble = (theta_aff_aff + theta_aff_aff_2) / 2 # Ensemble
theta_aff_ensemble = theta2homogeneous(theta_aff_ensemble)
theta_aff_aff_ensemble = theta2homogeneous(theta_aff_aff_ensemble)
theta = torch.bmm(theta_aff_aff_ensemble, theta_aff_ensemble).view(-1, 9)[:, :6]
### Process result
warped_image_aff_aff = affTnf(Im2Tensor(source_image), theta.view(-1,2,3))
result_aff_aff_np = warped_image_aff_aff.squeeze(0).transpose(0,1).transpose(1,2).cpu().detach().numpy()
io.imsave('results/aff_aff.jpg', result_aff_aff_np)
print()
print_info("# ====================================== #\n"
"# <Execution Time> #\n"
"# - %.4s seconds - #"%(time.time() - start_time)+"\n"
"# ====================================== #",['yellow','bold'])
# Create overlay
aff_overlay = cv2.addWeighted(src1=result_aff_np, alpha= 0.4, src2=target_image, beta=0.8, gamma=0)
io.imsave('results/aff_overlay.jpg', np.clip(aff_overlay,-1,1))
# Create checkboard
aff_checkboard = createCheckBoard(result_aff_np, target_image)
io.imsave('results/aff_checkboard.jpg', aff_checkboard)
### Display
fig, axs = plt.subplots(2,3)
axs[0][0].imshow(source_image)
axs[0][0].set_title('Source')
axs[0][1].imshow(target_image)
axs[0][1].set_title('Target')
axs[0][2].imshow(result_aff_np)
axs[0][2].set_title('Affine')
axs[1][0].imshow(result_aff_aff_np)
axs[1][0].set_title('Affine X 2')
axs[1][1].imshow(aff_checkboard)
axs[1][1].set_title('Affine Checkboard')
axs[1][2].imshow(aff_overlay)
axs[1][2].set_title('Affine Overlay')
for i in range(2):
for j in range(3):
axs[i][j].axis('off')
fig.set_dpi(300)
plt.show()