-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_dial.py
236 lines (207 loc) · 9.97 KB
/
main_dial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# -*- coding: utf-8 -*-
import argparse
import os
import sys
import logging
import json
import numpy as np
import random
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from model.model_trip_dial import TRIPDialGPT2
from utils.dataset import DialGPT2Dataset
from utils.data_utils import get_tokenizer, convert_ids_to_tokens
from utils.data_collator import DialGPT2Collator
from utils.trainer import IgniteTrainer
logging.basicConfig(
level = logging.INFO,
format = "%(asctime)s [%(levelname)s] %(message)s",
handlers = [
logging.StreamHandler(sys.stdout)
]
)
def parse_config():
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default="train", choices=["train", "test"])
parser.add_argument('--random_seed', type=int, default=42)
parser.add_argument('--use_gpu', type=str2bool, default="True")
# data config
parser.add_argument('--lang', type=str, choices=["zh", "en"])
parser.add_argument('--train_data', type=str, default=None)
parser.add_argument('--dev_data', type=str, default=None)
parser.add_argument('--test_data', type=str, default=None)
parser.add_argument('--plan_data', type=str, default=None)
parser.add_argument('--cache_dir', type=str, default="caches/dial/")
parser.add_argument('--log_dir', type=str, default="logs/dial/")
parser.add_argument('--max_seq_len', type=int, default=512)
parser.add_argument('--turn_type_size', type=int, default=16)
# training args
parser.add_argument('--load_checkpoint', type=str, default=None)
parser.add_argument('--num_epochs', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--log_steps', type=int, default=200)
parser.add_argument('--validate_steps', type=int, default=1000)
parser.add_argument('--use_control', type=str2bool, default="False")
parser.add_argument('--lr', type=float, default=2e-5)
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--warmup_ratio', type=float, default=0.1)
parser.add_argument("--scheduler", type=str, default="linear", choices=['linear','noam'], help="Method of optim")
parser.add_argument('--warmup_steps', type=int, default=3000)
parser.add_argument("--from_step", type=int, default=-1, help="Init learning rate from this step")
parser.add_argument('--max_grad_norm', type=float, default=1.0)
parser.add_argument('--gradient_accumulation_steps', type=int, default=64)
parser.add_argument('--hidden_size', type=int, default=768)
parser.add_argument('--max_position_embeddings', type=int, default=512)
parser.add_argument('--share_embedding', type=str2bool, default="False")
parser.add_argument('--scale_embedding', type=str2bool, default="True")
parser.add_argument('--decoder_layers', type=int, default=3)
parser.add_argument('--decoder_attention_heads', type=int, default=8)
parser.add_argument('--activation_function', type=str, default="gelu")
parser.add_argument('--decoder_ffn_dim', type=int, default=3072)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--decoder_layerdrop', type=float, default=0.1)
parser.add_argument('--activation_dropout', type=float, default=0.1)
parser.add_argument('--attention_dropout', type=float, default=0.1)
parser.add_argument('--init_std', type=float, default=0.02)
# decoding args
parser.add_argument('--infer_checkpoint', type=str, default=None)
parser.add_argument('--output_dir', type=str, default="outputs/dial/")
parser.add_argument('--test_batch_size', type=int, default=4)
parser.add_argument('--max_dec_len', type=int, default=100)
parser.add_argument("--min_dec_len", type=int, default=1)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument("--top_p", type=float, default=0.0)
return parser.parse_args()
def str2bool(v):
if v.lower() in ('true', 'yes', 't', 'y', '1'):
return True
elif v.lower() in ('false',' no', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError("Unsupported value encountered.")
def print_args(args):
print("=============== Args ===============")
for k in vars(args):
print("%s: %s" % (k, vars(args)[k]))
def set_seed(args):
if args.random_seed is not None:
torch.manual_seed(args.random_seed)
torch.backends.cudnn.benchmark = False
np.random.seed(args.random_seed)
random.seed(args.random_seed)
def run_train(args):
logging.info("=============== Training ===============")
if torch.cuda.is_available() and args.use_gpu:
device = torch.device("cuda")
else:
device = torch.device("cpu")
if args.lang == "zh":
# BertTokenizer is used for Chinese GPT-2 model
# ref https://huggingface.co/uer/gpt2-chinese-cluecorpussmall
args.config_dir = "uer/gpt2-chinese-cluecorpussmall"
tokenizer, num_added_tokens, token_id_dict = get_tokenizer(config_dir=args.config_dir, name="bert")
else:
# ref https://huggingface.co/gpt2
args.config_dir = "gpt2"
tokenizer, num_added_tokens, token_id_dict = get_tokenizer(config_dir=args.config_dir, name="gpt2")
args.vocab_size = len(tokenizer)
args.pad_token_id = token_id_dict["pad_token_id"]
args.bos_token_id = token_id_dict["bos_token_id"]
args.eos_token_id = token_id_dict["eos_token_id"]
logging.info("{}: Add {} additional special tokens.".format(type(tokenizer).__name__, num_added_tokens))
# define dataset
train_dataset = DialGPT2Dataset(data_path=args.train_data, data_partition="train",
tokenizer=tokenizer, special_tokens_dict=token_id_dict,
cache_dir=args.cache_dir, max_seq_len=args.max_seq_len,
turn_type_size=args.turn_type_size)
dev_dataset = DialGPT2Dataset(data_path=args.dev_data, data_partition="dev",
tokenizer=tokenizer, special_tokens_dict=token_id_dict,
cache_dir=args.cache_dir, max_seq_len=args.max_seq_len,
turn_type_size=args.turn_type_size)
# create dataloader
collator = DialGPT2Collator(device=device, padding_idx=args.pad_token_id)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=collator.custom_collate)
dev_loader = DataLoader(dev_dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collator.custom_collate)
# build model
if args.load_checkpoint is not None:
model = torch.load(args.load_checkpoint)
else:
model = TRIPDialGPT2(args=args)
model.to(device)
total_num = sum(p.numel() for p in model.parameters())
trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info("Total parameters: {}\tTrainable parameters: {}".format(total_num, trainable_num))
# build trainer and execute model training
trainer = IgniteTrainer(model=model,
train_loader=train_loader,
dev_loader=dev_loader,
args=args
)
trainer.run()
def run_test(args):
logging.info("=============== Testing ===============")
if torch.cuda.is_available() and args.use_gpu:
device = torch.device("cuda")
else:
device = torch.device("cpu")
if args.infer_checkpoint is not None:
model_path = os.path.join(args.log_dir, args.infer_checkpoint)
else:
model_path = os.path.join(args.log_dir, "best_model.bin")
model = torch.load(model_path)
logging.info("Model loaded from [{}]".format(model_path))
model.to(device)
model.eval()
# freeze model weights
for param in model.parameters():
param.requires_grad = False
if args.lang == "zh":
# BertTokenizer is used for Chinese GPT-2 model
# ref https://huggingface.co/uer/gpt2-chinese-cluecorpussmall
args.config_dir = "uer/gpt2-chinese-cluecorpussmall"
tokenizer, _, token_id_dict = get_tokenizer(config_dir=args.config_dir, name="bert")
else:
# ref https://huggingface.co/gpt2
args.config_dir = "gpt2"
tokenizer, _, token_id_dict = get_tokenizer(config_dir=args.config_dir, name="gpt2")
args.pad_token_id = token_id_dict["pad_token_id"]
# load data
data_partition = "test"
if args.test_data.endswith("test_unseen.json"):
data_partition = "test_unseen"
elif args.test_data.endswith("test_seen.json"):
data_partition = "test_seen"
test_dataset = DialGPT2Dataset(data_path=args.test_data, data_partition=data_partition,
tokenizer=tokenizer, special_tokens_dict=token_id_dict, cache_dir=args.cache_dir,
max_seq_len=args.max_seq_len, turn_type_size=args.turn_type_size,
is_test=True, plan_path=args.plan_data)
collator = DialGPT2Collator(device=device, padding_idx=args.pad_token_id)
test_loader = DataLoader(test_dataset, batch_size=args.test_batch_size, shuffle=False, collate_fn=collator.custom_collate)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
output_prefix = model_path.split('/')[-1].replace(".bin", "_%s.jsonl" % data_partition)
output_path = os.path.join(args.output_dir, output_prefix)
with open(output_path, 'w', encoding='utf-8') as f:
for inputs in tqdm(test_loader):
# execute generation
outputs = model.generate(args, inputs)
# post-process
resps = convert_ids_to_tokens(outputs["response"], tokenizer)
for resp in resps:
resp_obj = {"response": resp}
line = json.dumps(resp_obj, ensure_ascii=False)
f.write(line + "\n")
f.flush()
logging.info("Saved output to [{}]".format(output_path))
if __name__ == "__main__":
args = parse_config()
set_seed(args)
if args.mode == "train":
print_args(args)
run_train(args)
elif args.mode == "test":
run_test(args)
else:
exit("Please specify the \"mode\" parameter!")