-
Notifications
You must be signed in to change notification settings - Fork 11
/
train.py
113 lines (84 loc) · 3.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
from operator import itemgetter
import numpy as np
#import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
#get_ipython().magic(u'matplotlib inline')
#plt.style.use('ggplot')
import tensorflow as tf
from keras import models, regularizers, layers, optimizers, losses, metrics
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import np_utils, to_categorical
from keras.datasets import imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(
path="imdb.npz",
num_words=10000)
print("train_data ", train_data.shape)
print("train_labels ", train_labels.shape)
print("_"*100)
print("test_data ", test_data.shape)
print("test_labels ", test_labels.shape)
print("_"*100)
# See an actual review in words
# Reverse from integers to words using the DICTIONARY (given by keras...need to do nothing to create it)
word_index = imdb.get_word_index()
reverse_word_index = dict(
[(value, key) for (key, value) in word_index.items()])
# VECTORIZE as one cannot feed integers into a NN
# Encoding the integer sequences into a binary matrix - one hot encoder basically
# From integers representing words, at various lengths - to a normalized one hot encoded tensor (matrix) of 10k columns
def vectorize_sequences(sequences, dimension=10000):
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
results[i, sequence] = 1.
return results
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
print("x_train ", x_train.shape)
print("x_test ", x_test.shape)
# VECTORIZE the labels too - NO INTEGERS only floats into a tensor...(rare exceptions)
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')
print("y_train ", y_train.shape)
print("y_test ", y_test.shape)
# Set a VALIDATION set
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
print("x_val ", x_val.shape)
print("partial_x_train ", partial_x_train.shape)
print("y_val ", y_val.shape)
print("partial_y_train ", partial_y_train.shape)
# NN MODEL
# Use of DROPOUT
#model = models.Sequential()
#model.add(layers.Dense(16, kernel_regularizer=regularizers.l1(0.001), activation='relu', input_shape=(10000,)))
#model.add(layers.Dropout(0.5))
#model.add(layers.Dense(16, kernel_regularizer=regularizers.l1(0.001),activation='relu'))
#model.add(layers.Dropout(0.5))
#model.add(layers.Dense(1, activation='sigmoid'))
# Use of REGULARIZATION
model = models.Sequential()
model.add(layers.Dense(16, kernel_regularizer=regularizers.l1_l2(l1=0.001, l2=0.001),activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, kernel_regularizer=regularizers.l1_l2(l1=0.001, l2=0.001),activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
# REGULARIZERS L1 L2
#regularizers.l1(0.001)
#regularizers.l2(0.001)
regularizers.l1_l2(l1=0.001, l2=0.001)
# OPTIMIZERS
#model.compile(optimizer=optimizers.RMSprop(lr=0.001), loss=losses.binary_crossentropy, metrics=[metrics.binary_accuracy])
model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['accuracy'])
# FIT / TRAIN model
NumEpochs = 28
BatchSize = 512
#model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit(partial_x_train, partial_y_train, epochs=NumEpochs, batch_size=BatchSize, validation_data=(x_val, y_val))
results = model.evaluate(x_test, y_test)
print("_"*100)
print("Test Loss and Accuracy")
print("results ", results)
model.save('./sentiment2.model.h5')