forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_prepare_headmodel.m
443 lines (409 loc) · 18 KB
/
ft_prepare_headmodel.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
function [vol, cfg] = ft_prepare_headmodel(cfg, data)
% FT_PREPARE_HEADMODEL constructs a volume conduction model from the geometry
% of the head. The volume conduction model specifies how currents that are
% generated by sources in the brain, e.g. dipoles, are propagated through the
% tissue and how these result in externally measureable EEG potentials or MEG
% fields.
%
% FieldTrip implements a variety of forward solutions, partially with internal
% code and some of them using external toolboxes or executables. Each of the
% forward solutions requires a set of configuration options which are listed
% below. This function takes care of all the preparatory steps in the
% construction of the volume conduction model and sets it up so that
% subsequent computations are efficient and fast.
%
% Use as
% vol = ft_prepare_headmodel(cfg) or
% vol = ft_prepare_headmodel(cfg, mesh) with the output of FT_PREPARE_MESH or FT_READ_HEADSHAPE
% vol = ft_prepare_headmodel(cfg, seg) with the output of FT_VOLUMESEGMENT
% vol = ft_prepare_headmodel(cfg, elec) with the output of FT_READ_SENS
% vol = ft_prepare_headmodel(cfg, grid) with the output of FT_PREPARE_LEADFIELD
%
% In general the input to this function is a geometrical description of the
% shape of the head and a description of the electrical conductivity. The
% geometrical description can be a set of surface points obtained from
% fT_READ_HEADSHAPE, a surface mesh that was obtained from FT_PREPARE_MESH or
% a segmented anatomical MRI that was obtained from FT_VOLUMESEGMENT.
%
% The cfg argument is a structure that can contain:
% cfg.method string that specifies the forward solution, see below
% cfg.conductivity a number or a vector containing the conductivities of the compartments
% cfg.hdmfile name of the file containing the headmodel, see FT_READ_VOL
% cfg.tissue a string or integer, to be used in combination with a 'seg' for the
% second intput. If 'brain', 'skull', and 'scalp' are fields
% present in 'seg', then cfg.tissue need not be specified, as
% these are defaults, depending on cfg.method. Otherwise,
% cfg.tissue should refer to which field(s) of seg should be used.
%
% For EEG the following methods are available:
% singlesphere analytical single sphere model
% concentricspheres analytical concentric sphere model with up to 4 spheres
% openmeeg boundary element method, based on the OpenMEEG software
% bemcp boundary element method, based on the implementation from Christophe Phillips
% dipoli boundary element method, based on the implementation from Thom Oostendorp
% asa boundary element method, based on the (commercial) ASA software
% simbio finite element method, based on the SimBio software
% fns finite difference method, based on the FNS software
% infinite electric dipole in an infinite homogenous medium
% halfspace infinite homogenous medium on one side, vacuum on the other
% besa finite element leadfield matrix from BESA
% interpolate interpolate the precomputed leadfield
%
% For MEG the following methods are available:
% singlesphere analytical single sphere model
% localspheres local spheres model for MEG, one sphere per channel
% singleshell realisically shaped single shell approximation, based on the implementation from Guido Nolte
% infinite magnetic dipole in an infinite vacuum
%
% Each specific method has its own specific configuration options which are listed below.
%
% BEMCP, DIPOLI, OPENMEEG
% cfg.tissue see above; in combination with 'seg' input
% cfg.isolatedsource (optional)
%
% CONCENTRICSPHERES
% cfg.tissue see above; in combination with 'seg' input
% cfg.fitind (optional)
%
% LOCALSPHERES
% cfg.grad
% cfg.tissue see above; in combination with 'seg' input; default options are 'brain' or 'scalp'
% cfg.feedback (optional)
% cfg.radius (optional)
% cfg.maxradius (optional)
% cfg.baseline (optional)
%
% SIMBIO
% cfg.conductivity
%
% SINGLESHELL
% cfg.tissue see above; in combination with 'seg' input; default options are 'brain' or 'scalp'
%
% SINGLESPHERE
% cfg.tissue see above; in combination with 'seg' input; default options are 'brain' or 'scalp'; must be only 1 value
%
% INTERPOLATE
% cfg.outputfile (required) string, filename prefix for the output files
%
% BESA
% cfg.hdmfile (required) string, filename of precomputed FEM leadfield
% cfg.elecfile (required) string, filename of electrode configuration for the FEM leadfield
% cfg.outputfile (required) string, filename prefix for the output files
%
% FNS
% cfg.tissue
% cfg.tissueval
% cfg.conductivity
% cfg.elec or cfg.grad
% cfg.transform
% cfg.unit
%
% HALFSPACE
% cfg.point
% cfg.submethod (optional)
%
% More details for each of the specific methods can be found in the corresponding
% low-level function which is called FT_HEADMODEL_XXX where XXX is the method
% of choise.
%
% See also FT_PREPARE_SOURCEMODEL, FT_PREPARE_LEADFIELD, FT_PREPARE_MESH,
% FT_HEADMODEL_BEMCP, FT_HEADMODEL_ASA, FT_HEADMODEL_DIPOLI,
% FT_HEADMODEL_SIMBIO, FT_HEADMODEL_FNS, FT_HEADMODEL_HALFSPACE,
% FT_HEADMODEL_INFINITE, FT_HEADMODEL_OPENMEEG, FT_HEADMODEL_SINGLESPHERE,
% FT_HEADMODEL_CONCENTRICSPHERES, FT_HEADMODEL_LOCALSPHERES,
% FT_HEADMODEL_SINGLESHELL, FT_HEADMODEL_INTERPOLATE
% Copyright (C) 2011, Cristiano Micheli
% Copyright (C) 2011-2012, Jan-Mathijs Schoffelen, Robert Oostenveld
% Copyright (C) 2013, Robert Oostenveld, Johanna Zumer
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
revision = '$Id$';
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble trackconfig
ft_preamble provenance
% the abort variable is set to true or false in ft_preamble_init
if abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'required', 'method');
cfg = ft_checkconfig(cfg, 'deprecated', 'geom');
cfg = ft_checkconfig(cfg, 'forbidden', 'unit'); % see http://bugzilla.fcdonders.nl/show_bug.cgi?id=2375
cfg = ft_checkconfig(cfg, 'renamed', {'geom', 'headshape'});
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'bem_openmeeg', 'openmeeg'});
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'bem_dipoli', 'dipoli'});
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'bem_cp', 'bemcp'});
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'nolte', 'singleshell'});
% set the general defaults
cfg.hdmfile = ft_getopt(cfg, 'hdmfile');
cfg.headshape = ft_getopt(cfg, 'headshape');
cfg.conductivity = ft_getopt(cfg, 'conductivity');
% volume related options
cfg.tissue = ft_getopt(cfg, 'tissue');
cfg.smooth = ft_getopt(cfg, 'smooth');
cfg.threshold = ft_getopt(cfg, 'threshold');
% other options
cfg.numvertices = ft_getopt(cfg, 'numvertices', 3000);
cfg.isolatedsource = ft_getopt(cfg, 'isolatedsource'); % used for dipoli and openmeeg
cfg.fitind = ft_getopt(cfg, 'fitind'); % used for concentricspheres
cfg.point = ft_getopt(cfg, 'point'); % used for halfspace
cfg.submethod = ft_getopt(cfg, 'submethod'); % used for halfspace
cfg.feedback = ft_getopt(cfg, 'feedback');
cfg.radius = ft_getopt(cfg, 'radius');
cfg.maxradius = ft_getopt(cfg, 'maxradius');
cfg.baseline = ft_getopt(cfg, 'baseline');
cfg.singlesphere = ft_getopt(cfg, 'singlesphere');
cfg.tissueval = ft_getopt(cfg, 'tissueval'); % used for simbio
cfg.transform = ft_getopt(cfg, 'transform');
cfg.siunits = ft_getopt(cfg, 'siunits', 'no'); % yes/no, convert the input and continue with SI units
cfg.smooth = ft_getopt(cfg, 'smooth'); % used for interpolate
if nargin>1,
% check if the input data is valid for this function and ensure that it has the units specified
data = ft_checkdata(data, 'hasunit', 'yes');
else
data = [];
end
if istrue(cfg.siunits)
% convert to SI units
if ~isempty(data)
data = ft_convert_units(data, 'm');
end
if isfield(cfg, 'grad') && ~isempty(cfg.grad)
cfg.grad = ft_convert_units(cfg.grad, 'm');
end
if isfield(cfg, 'elec') && ~isempty(cfg.elec)
cfg.elec = ft_convert_units(cfg.elec, 'm');
end
end
% if the conductivity is in the data cfg.conductivity is overwritten
if nargin>1 && isfield(data, 'cond')
cfg.conductivity = data.cond;
end
if isfield(data, 'bnd')
data = data.bnd;
end
% boolean variables to manages the different geometrical input data objects
input_mesh = isfield(data, 'pnt') && ~isfield(data, 'label');
input_seg = ft_datatype(data, 'segmentation');
input_elec = ft_datatype(data, 'sens');
% the construction of the volume conductor model is performed below
switch cfg.method
case 'interpolate'
% the "data" here represents the output of FT_PREPARE_LEADIFLED, i.e. a regular dipole
% grid with pre-computed leadfields
sens = ft_fetch_sens(cfg, data);
vol = ft_headmodel_interpolate(cfg.outputfile, sens, data, 'smooth', cfg.smooth);
case 'besa'
% the cfg.hdmfile points to the filename of the FEM solution that was computed
% in BESA, cfg.elecfile should point to the corresponding electrode specification
sens = ft_fetch_sens(cfg, data);
vol = ft_headmodel_interpolate(cfg.outputfile, sens, cfg.hdmfile, 'smooth', cfg.smooth);
case 'asa'
if ~ft_filetype(cfg.hdmfile, 'asa_vol')
error('You must supply a valid cfg.hdmfile for use with ASA headmodel')
end
vol = ft_headmodel_asa(cfg.hdmfile);
case {'bemcp' 'dipoli' 'openmeeg'}
% the low-level functions all need a mesh
if input_mesh
if ~isfield(data, 'tri')
error('Please give a mesh with closed triangulation');
else
geometry = data;
end
elseif input_seg
tmpcfg = [];
tmpcfg.numvertices = cfg.numvertices;
tmpcfg.tissue = cfg.tissue;
geometry = ft_prepare_mesh(tmpcfg, data);
else
error('Either a segmentated MRI or data with closed triangulated mesh is required as data input for the bemcp, dipoli or openmeeg method');
end
if strcmp(cfg.method, 'bemcp')
vol = ft_headmodel_bemcp(geometry, 'conductivity', cfg.conductivity);
if any(isnan(vol.mat(:)))
% HACK add a little bit of noise, with the NatMEG tutorial data, I discovered that this prevents the warning
% Matrix is singular, close to singular or badly scaled. Results may be inaccurate. RCOND = NaN.
geometry(1).pnt = geometry(1).pnt + randn(size(geometry(1).pnt))*scalingfactor('um', geometry(1).unit);
geometry(2).pnt = geometry(2).pnt + randn(size(geometry(2).pnt))*scalingfactor('um', geometry(2).unit);
geometry(3).pnt = geometry(3).pnt + randn(size(geometry(3).pnt))*scalingfactor('um', geometry(3).unit);
warning('NaN detected, trying once more with slightly different vertex positions');
vol = ft_headmodel_bemcp(geometry, 'conductivity', cfg.conductivity);
end
elseif strcmp(cfg.method, 'dipoli')
vol = ft_headmodel_dipoli(geometry, 'conductivity', cfg.conductivity, 'isolatedsource', cfg.isolatedsource);
else
vol = ft_headmodel_openmeeg(geometry, 'conductivity', cfg.conductivity, 'isolatedsource', cfg.isolatedsource);
end
case 'concentricspheres'
% the low-level functions needs surface points, triangles are not needed
if input_mesh
geometry = data;
elseif input_seg
tmpcfg = [];
tmpcfg.numvertices = cfg.numvertices;
tmpcfg.tissue = cfg.tissue;
geometry = ft_prepare_mesh(tmpcfg, data);
elseif input_elec
geometry.pnt = data.chanpos;
geometry.unit = data.unit;
elseif ~isempty(cfg.headshape) && isnumeric(cfg.headshape)
geometry.pnt = cfg.headshape;
elseif ~isempty(cfg.headshape) && isstruct(cfg.headshape)
geometry = cfg.headshape;
elseif ~isempty(cfg.headshape) && ischar(cfg.headshape)
geometry = ft_read_headshape(cfg.headshape);
else
error('You must give a mesh, segmented MRI, sensor data type, or cfg.headshape');
end
vol = ft_headmodel_concentricspheres(geometry, 'conductivity', cfg.conductivity, 'fitind', cfg.fitind);
case 'halfspace'
if input_mesh
geometry = data;
else
error('data with mesh is required as data input for the halfspace method');
end
if isempty(cfg.point)
error('cfg.point is required for halfspace method');
end
vol = ft_headmodel_halfspace(geometry, cfg.point, 'conductivity', cfg.conductivity, 'sourcemodel', cfg.submethod);
case 'infinite'
% this takes no input arguments
vol = ft_headmodel_infinite();
case {'localspheres' 'singlesphere' 'singleshell'}
cfg.grad = ft_getopt(cfg, 'grad'); % used for localspheres
% these three methods all require a single mesh or set of surface points
if input_mesh
geometry = data;
elseif input_seg
tmpcfg = [];
tmpcfg.numvertices = cfg.numvertices;
if ~isempty(cfg.tissue)
% extract the specified surface
tmpcfg.tissue = cfg.tissue;
geometry = ft_prepare_mesh(tmpcfg, data);
else
% try to extract either the brain or scalp surface
geometry = [];
if isempty(geometry)
try
tmpcfg.tissue = 'brain';
geometry = ft_prepare_mesh(tmpcfg, data);
end
end
if isempty(geometry)
try
tmpcfg.tissue = 'scalp';
geometry = ft_prepare_mesh(tmpcfg, data);
end
end
if isempty(geometry)
error('please specificy cfg.tissue and pass an appropriate segmented MRI as input data')
end
end
elseif input_elec
geometry.pnt = data.chanpos;
geometry.unit = data.unit;
elseif ~isempty(cfg.headshape) && isnumeric(cfg.headshape)
geometry.pnt = cfg.headshape;
elseif ~isempty(cfg.headshape) && isstruct(cfg.headshape)
geometry = cfg.headshape;
elseif ~isempty(cfg.headshape) && ischar(cfg.headshape)
geometry = ft_read_headshape(cfg.headshape);
elseif ~isempty(cfg.hdmfile)
% the CTF *.hdm file will be read further down
else
error('this requires a mesh, set of surface points or a segmented mri');
end
switch cfg.method
case 'singlesphere'
if ~isempty(cfg.hdmfile)
% read the volume conduction model from a CTF *.hdm file
tmp = ft_read_vol(cfg.hdmfile);
try
% the single sphere is contained in the "orig" field
vol = [];
vol.r = tmp.orig.MEG_Sphere.RADIUS;
vol.o = [tmp.orig.MEG_Sphere.ORIGIN_X tmp.orig.MEG_Sphere.ORIGIN_Y tmp.orig.MEG_Sphere.ORIGIN_Z];
vol.unit = 'cm';
catch
error('the volume conduction model in "%s" is invalid', cfg.hdmfile);
end
else
% construct the volume conduction model
vol = ft_headmodel_singlesphere(geometry, 'conductivity', cfg.conductivity);
end % hdmfile
case 'localspheres'
if ~isempty(cfg.hdmfile)
% read the volume conduction model from a CTF *.hdm file
tmp = ft_read_vol(cfg.hdmfile);
try
vol = [];
vol.label = tmp.label;
vol.r = tmp.r;
vol.o = tmp.o;
vol.unit = 'cm';
catch
error('the volume conduction model in "%s" is invalid', cfg.hdmfile);
end
else
% construct the volume conduction model
cfg.grad = ft_getopt(cfg, 'grad');
if isempty(cfg.grad)
error('for cfg.method = %s, you need to supply a cfg.grad structure', cfg.method);
end
vol = ft_headmodel_localspheres(geometry, cfg.grad, 'feedback', cfg.feedback, 'radius', cfg.radius, 'maxradius', cfg.maxradius, 'baseline', cfg.baseline, 'singlesphere', cfg.singlesphere);
end % hdmfile
case 'singleshell'
if ~isfield(geometry, 'tri')
tmpcfg = [];
tmpcfg.headshape = geometry;
geometry = ft_prepare_mesh(tmpcfg);
end
vol = ft_headmodel_singleshell(geometry);
end
case {'simbio'}
if input_elec || isfield(data, 'pos') || input_mesh
geometry = data; % more serious checks of validity of the mesh occur inside ft_headmodel_simbio
else
error('You must provide a mesh with tetrahedral or hexahedral elements, where each element has a scalar or tensor conductivity');
end
vol = ft_headmodel_simbio(geometry, 'conductivity', cfg.conductivity);
case {'fns'}
if input_seg
data = ft_datatype_segmentation(data, 'segmentationstyle', 'indexed');
else
error('segmented MRI must be given as data input')
end
sens = ft_fetch_sens(cfg, data);
vol = ft_headmodel_fns(data.seg, 'tissue', cfg.tissue, 'tissueval', cfg.tissueval, 'tissuecond', cfg.conductivity, 'sens', sens, 'transform', cfg.transform);
otherwise
error('unsupported method "%s"', cfg.method);
end % switch method
% ensure that the geometrical units are specified
if ~ft_voltype(vol, 'infinite'),
vol = ft_convert_units(vol);
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble trackconfig
ft_postamble provenance
ft_postamble previous data
ft_postamble history vol