-
Notifications
You must be signed in to change notification settings - Fork 441
/
Copy pathingenuity.py
440 lines (340 loc) · 19.2 KB
/
ingenuity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import os
import torch
import xml.etree.ElementTree as ET
from isaacgymenvs.utils.torch_jit_utils import *
from .base.vec_task import VecTask
from isaacgym import gymutil, gymtorch, gymapi
class Ingenuity(VecTask):
def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render):
self.cfg = cfg
self.max_episode_length = self.cfg["env"]["maxEpisodeLength"]
self.debug_viz = self.cfg["env"]["enableDebugVis"]
# Observations:
# 0:13 - root state
self.cfg["env"]["numObservations"] = 13
# Actions:
# 0:3 - xyz force vector for lower rotor
# 4:6 - xyz force vector for upper rotor
self.cfg["env"]["numActions"] = 6
super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render)
dofs_per_env = 4
bodies_per_env = 6
self.root_tensor = self.gym.acquire_actor_root_state_tensor(self.sim)
self.dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim)
vec_root_tensor = gymtorch.wrap_tensor(self.root_tensor).view(self.num_envs, 2, 13)
vec_dof_tensor = gymtorch.wrap_tensor(self.dof_state_tensor).view(self.num_envs, dofs_per_env, 2)
self.root_states = vec_root_tensor[:, 0, :]
self.root_positions = self.root_states[:, 0:3]
self.target_root_positions = torch.zeros((self.num_envs, 3), device=self.device, dtype=torch.float32)
self.target_root_positions[:, 2] = 1
self.root_quats = self.root_states[:, 3:7]
self.root_linvels = self.root_states[:, 7:10]
self.root_angvels = self.root_states[:, 10:13]
self.marker_states = vec_root_tensor[:, 1, :]
self.marker_positions = self.marker_states[:, 0:3]
self.dof_states = vec_dof_tensor
self.dof_positions = vec_dof_tensor[..., 0]
self.dof_velocities = vec_dof_tensor[..., 1]
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_dof_state_tensor(self.sim)
self.initial_root_states = self.root_states.clone()
self.initial_dof_states = self.dof_states.clone()
self.thrust_lower_limit = 0
self.thrust_upper_limit = 2000
self.thrust_lateral_component = 0.2
# control tensors
self.thrusts = torch.zeros((self.num_envs, 2, 3), dtype=torch.float32, device=self.device, requires_grad=False)
self.forces = torch.zeros((self.num_envs, bodies_per_env, 3), dtype=torch.float32, device=self.device, requires_grad=False)
self.all_actor_indices = torch.arange(self.num_envs * 2, dtype=torch.int32, device=self.device).reshape((self.num_envs, 2))
if self.viewer:
cam_pos = gymapi.Vec3(2.25, 2.25, 3.0)
cam_target = gymapi.Vec3(3.5, 4.0, 1.9)
self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target)
# need rigid body states for visualizing thrusts
self.rb_state_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim)
self.rb_states = gymtorch.wrap_tensor(self.rb_state_tensor).view(self.num_envs, bodies_per_env, 13)
self.rb_positions = self.rb_states[..., 0:3]
self.rb_quats = self.rb_states[..., 3:7]
def create_sim(self):
self.sim_params.up_axis = gymapi.UP_AXIS_Z
# Mars gravity
self.sim_params.gravity.x = 0
self.sim_params.gravity.y = 0
self.sim_params.gravity.z = -3.721
self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params)
self.dt = self.sim_params.dt
self._create_ingenuity_asset()
self._create_ground_plane()
self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs)))
def _create_ingenuity_asset(self):
chassis_size = 0.06
rotor_axis_length = 0.2
rotor_radius = 0.15
rotor_thickness = 0.01
rotor_arm_radius = 0.01
root = ET.Element('mujoco')
root.attrib["model"] = "Ingenuity"
compiler = ET.SubElement(root, "compiler")
compiler.attrib["angle"] = "degree"
compiler.attrib["coordinate"] = "local"
compiler.attrib["inertiafromgeom"] = "true"
mesh_asset = ET.SubElement(root, "asset")
model_path = "../assets/glb/ingenuity/"
mesh = ET.SubElement(mesh_asset, "mesh")
mesh.attrib["file"] = model_path + "chassis.glb"
mesh.attrib["name"] = "ingenuity_mesh"
lower_prop_mesh = ET.SubElement(mesh_asset, "mesh")
lower_prop_mesh.attrib["file"] = model_path + "lower_prop.glb"
lower_prop_mesh.attrib["name"] = "lower_prop_mesh"
upper_prop_mesh = ET.SubElement(mesh_asset, "mesh")
upper_prop_mesh.attrib["file"] = model_path + "upper_prop.glb"
upper_prop_mesh.attrib["name"] = "upper_prop_mesh"
worldbody = ET.SubElement(root, "worldbody")
chassis = ET.SubElement(worldbody, "body")
chassis.attrib["name"] = "chassis"
chassis.attrib["pos"] = "%g %g %g" % (0, 0, 0)
chassis_geom = ET.SubElement(chassis, "geom")
chassis_geom.attrib["type"] = "box"
chassis_geom.attrib["size"] = "%g %g %g" % (chassis_size, chassis_size, chassis_size)
chassis_geom.attrib["pos"] = "0 0 0"
chassis_geom.attrib["density"] = "50"
mesh_quat = gymapi.Quat.from_euler_zyx(0.5 * math.pi, 0, 0)
mesh_geom = ET.SubElement(chassis, "geom")
mesh_geom.attrib["type"] = "mesh"
mesh_geom.attrib["quat"] = "%g %g %g %g" % (mesh_quat.w, mesh_quat.x, mesh_quat.y, mesh_quat.z)
mesh_geom.attrib["mesh"] = "ingenuity_mesh"
mesh_geom.attrib["pos"] = "%g %g %g" % (0, 0, 0)
mesh_geom.attrib["contype"] = "0"
mesh_geom.attrib["conaffinity"] = "0"
chassis_joint = ET.SubElement(chassis, "joint")
chassis_joint.attrib["name"] = "root_joint"
chassis_joint.attrib["type"] = "hinge"
chassis_joint.attrib["limited"] = "true"
chassis_joint.attrib["range"] = "0 0"
zaxis = gymapi.Vec3(0, 0, 1)
low_rotor_pos = gymapi.Vec3(0, 0, 0)
rotor_separation = gymapi.Vec3(0, 0, 0.025)
for i, mesh_name in enumerate(["lower_prop_mesh", "upper_prop_mesh"]):
angle = 0
rotor_quat = gymapi.Quat.from_axis_angle(zaxis, angle)
rotor_pos = low_rotor_pos + (rotor_separation * i)
rotor = ET.SubElement(chassis, "body")
rotor.attrib["name"] = "rotor_physics_" + str(i)
rotor.attrib["pos"] = "%g %g %g" % (rotor_pos.x, rotor_pos.y, rotor_pos.z)
rotor.attrib["quat"] = "%g %g %g %g" % (rotor_quat.w, rotor_quat.x, rotor_quat.y, rotor_quat.z)
rotor_geom = ET.SubElement(rotor, "geom")
rotor_geom.attrib["type"] = "cylinder"
rotor_geom.attrib["size"] = "%g %g" % (rotor_radius, 0.5 * rotor_thickness)
rotor_geom.attrib["density"] = "1000"
roll_joint = ET.SubElement(rotor, "joint")
roll_joint.attrib["name"] = "rotor_roll" + str(i)
roll_joint.attrib["type"] = "hinge"
roll_joint.attrib["limited"] = "true"
roll_joint.attrib["range"] = "0 0"
roll_joint.attrib["pos"] = "%g %g %g" % (0, 0, 0)
rotor_dummy = ET.SubElement(chassis, "body")
rotor_dummy.attrib["name"] = "rotor_visual_" + str(i)
rotor_dummy.attrib["pos"] = "%g %g %g" % (rotor_pos.x, rotor_pos.y, rotor_pos.z)
rotor_dummy.attrib["quat"] = "%g %g %g %g" % (rotor_quat.w, rotor_quat.x, rotor_quat.y, rotor_quat.z)
rotor_mesh_geom = ET.SubElement(rotor_dummy, "geom")
rotor_mesh_geom.attrib["type"] = "mesh"
rotor_mesh_geom.attrib["mesh"] = mesh_name
rotor_mesh_quat = gymapi.Quat.from_euler_zyx(0.5 * math.pi, 0, 0)
rotor_mesh_geom.attrib["quat"] = "%g %g %g %g" % (rotor_mesh_quat.w, rotor_mesh_quat.x, rotor_mesh_quat.y, rotor_mesh_quat.z)
rotor_mesh_geom.attrib["contype"] = "0"
rotor_mesh_geom.attrib["conaffinity"] = "0"
dummy_roll_joint = ET.SubElement(rotor_dummy, "joint")
dummy_roll_joint.attrib["name"] = "rotor_roll" + str(i)
dummy_roll_joint.attrib["type"] = "hinge"
dummy_roll_joint.attrib["axis"] = "0 0 1"
dummy_roll_joint.attrib["pos"] = "%g %g %g" % (0, 0, 0)
gymutil._indent_xml(root)
ET.ElementTree(root).write("ingenuity.xml")
def _create_ground_plane(self):
plane_params = gymapi.PlaneParams()
plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0)
self.gym.add_ground(self.sim, plane_params)
def _create_envs(self, num_envs, spacing, num_per_row):
lower = gymapi.Vec3(-spacing, -spacing, 0.0)
upper = gymapi.Vec3(spacing, spacing, spacing)
asset_root = "./"
asset_file = "ingenuity.xml"
asset_options = gymapi.AssetOptions()
asset_options.fix_base_link = False
asset_options.angular_damping = 0.0
asset_options.max_angular_velocity = 4 * math.pi
asset_options.slices_per_cylinder = 40
asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options)
asset_options.fix_base_link = True
marker_asset = self.gym.create_sphere(self.sim, 0.1, asset_options)
default_pose = gymapi.Transform()
default_pose.p.z = 1.0
self.envs = []
self.actor_handles = []
for i in range(self.num_envs):
# create env instance
env = self.gym.create_env(self.sim, lower, upper, num_per_row)
actor_handle = self.gym.create_actor(env, asset, default_pose, "ingenuity", i, 1, 1)
dof_props = self.gym.get_actor_dof_properties(env, actor_handle)
dof_props['stiffness'].fill(0)
dof_props['damping'].fill(0)
self.gym.set_actor_dof_properties(env, actor_handle, dof_props)
marker_handle = self.gym.create_actor(env, marker_asset, default_pose, "marker", i, 1, 1)
self.gym.set_rigid_body_color(env, marker_handle, 0, gymapi.MESH_VISUAL_AND_COLLISION, gymapi.Vec3(1, 0, 0))
self.actor_handles.append(actor_handle)
self.envs.append(env)
if self.debug_viz:
# need env offsets for the rotors
self.rotor_env_offsets = torch.zeros((self.num_envs, 2, 3), device=self.device)
for i in range(self.num_envs):
env_origin = self.gym.get_env_origin(self.envs[i])
self.rotor_env_offsets[i, ..., 0] = env_origin.x
self.rotor_env_offsets[i, ..., 1] = env_origin.y
self.rotor_env_offsets[i, ..., 2] = env_origin.z
def set_targets(self, env_ids):
num_sets = len(env_ids)
# set target position randomly with x, y in (-5, 5) and z in (1, 2)
self.target_root_positions[env_ids, 0:2] = (torch.rand(num_sets, 2, device=self.device) * 10) - 5
self.target_root_positions[env_ids, 2] = torch.rand(num_sets, device=self.device) + 1
self.marker_positions[env_ids] = self.target_root_positions[env_ids]
# copter "position" is at the bottom of the legs, so shift the target up so it visually aligns better
self.marker_positions[env_ids, 2] += 0.4
actor_indices = self.all_actor_indices[env_ids, 1].flatten()
return actor_indices
def reset_idx(self, env_ids):
# set rotor speeds
self.dof_velocities[:, 1] = -50
self.dof_velocities[:, 3] = 50
num_resets = len(env_ids)
target_actor_indices = self.set_targets(env_ids)
actor_indices = self.all_actor_indices[env_ids, 0].flatten()
self.root_states[env_ids] = self.initial_root_states[env_ids]
self.root_states[env_ids, 0] += torch_rand_float(-1.5, 1.5, (num_resets, 1), self.device).flatten()
self.root_states[env_ids, 1] += torch_rand_float(-1.5, 1.5, (num_resets, 1), self.device).flatten()
self.root_states[env_ids, 2] += torch_rand_float(-0.2, 1.5, (num_resets, 1), self.device).flatten()
self.gym.set_dof_state_tensor_indexed(self.sim, self.dof_state_tensor, gymtorch.unwrap_tensor(actor_indices), num_resets)
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
return torch.unique(torch.cat([target_actor_indices, actor_indices]))
def pre_physics_step(self, _actions):
# resets
set_target_ids = (self.progress_buf % 500 == 0).nonzero(as_tuple=False).squeeze(-1)
target_actor_indices = torch.tensor([], device=self.device, dtype=torch.int32)
if len(set_target_ids) > 0:
target_actor_indices = self.set_targets(set_target_ids)
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
actor_indices = torch.tensor([], device=self.device, dtype=torch.int32)
if len(reset_env_ids) > 0:
actor_indices = self.reset_idx(reset_env_ids)
reset_indices = torch.unique(torch.cat([target_actor_indices, actor_indices]))
if len(reset_indices) > 0:
self.gym.set_actor_root_state_tensor_indexed(self.sim, self.root_tensor, gymtorch.unwrap_tensor(reset_indices), len(reset_indices))
actions = _actions.to(self.device)
thrust_action_speed_scale = 2000
vertical_thrust_prop_0 = torch.clamp(actions[:, 2] * thrust_action_speed_scale, -self.thrust_upper_limit, self.thrust_upper_limit)
vertical_thrust_prop_1 = torch.clamp(actions[:, 5] * thrust_action_speed_scale, -self.thrust_upper_limit, self.thrust_upper_limit)
lateral_fraction_prop_0 = torch.clamp(actions[:, 0:2], -self.thrust_lateral_component, self.thrust_lateral_component)
lateral_fraction_prop_1 = torch.clamp(actions[:, 3:5], -self.thrust_lateral_component, self.thrust_lateral_component)
self.thrusts[:, 0, 2] = self.dt * vertical_thrust_prop_0
self.thrusts[:, 0, 0:2] = self.thrusts[:, 0, 2, None] * lateral_fraction_prop_0
self.thrusts[:, 1, 2] = self.dt * vertical_thrust_prop_1
self.thrusts[:, 1, 0:2] = self.thrusts[:, 1, 2, None] * lateral_fraction_prop_1
self.forces[:, 1] = self.thrusts[:, 0]
self.forces[:, 3] = self.thrusts[:, 1]
# clear actions for reset envs
self.thrusts[reset_env_ids] = 0.0
self.forces[reset_env_ids] = 0.0
# apply actions
self.gym.apply_rigid_body_force_tensors(self.sim, gymtorch.unwrap_tensor(self.forces), None, gymapi.LOCAL_SPACE)
def post_physics_step(self):
self.progress_buf += 1
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_dof_state_tensor(self.sim)
self.compute_observations()
self.compute_reward()
# debug viz
if self.viewer and self.debug_viz:
# compute start and end positions for visualizing thrust lines
self.gym.refresh_rigid_body_state_tensor(self.sim)
rotor_indices = torch.LongTensor([2, 4, 6, 8])
quats = self.rb_quats[:, rotor_indices]
dirs = -quat_axis(quats.view(self.num_envs * 4, 4), 2).view(self.num_envs, 4, 3)
starts = self.rb_positions[:, rotor_indices] + self.rotor_env_offsets
ends = starts + 0.1 * self.thrusts.view(self.num_envs, 4, 1) * dirs
# submit debug line geometry
verts = torch.stack([starts, ends], dim=2).cpu().numpy()
colors = np.zeros((self.num_envs * 4, 3), dtype=np.float32)
colors[..., 0] = 1.0
self.gym.clear_lines(self.viewer)
self.gym.add_lines(self.viewer, None, self.num_envs * 4, verts, colors)
def compute_observations(self):
self.obs_buf[..., 0:3] = (self.target_root_positions - self.root_positions) / 3
self.obs_buf[..., 3:7] = self.root_quats
self.obs_buf[..., 7:10] = self.root_linvels / 2
self.obs_buf[..., 10:13] = self.root_angvels / math.pi
return self.obs_buf
def compute_reward(self):
self.rew_buf[:], self.reset_buf[:] = compute_ingenuity_reward(
self.root_positions,
self.target_root_positions,
self.root_quats,
self.root_linvels,
self.root_angvels,
self.reset_buf, self.progress_buf, self.max_episode_length
)
#####################################################################
###=========================jit functions=========================###
#####################################################################
@torch.jit.script
def compute_ingenuity_reward(root_positions, target_root_positions, root_quats, root_linvels, root_angvels, reset_buf, progress_buf, max_episode_length):
# type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float) -> Tuple[Tensor, Tensor]
# distance to target
target_dist = torch.sqrt(torch.square(target_root_positions - root_positions).sum(-1))
pos_reward = 1.0 / (1.0 + target_dist * target_dist)
# uprightness
ups = quat_axis(root_quats, 2)
tiltage = torch.abs(1 - ups[..., 2])
up_reward = 5.0 / (1.0 + tiltage * tiltage)
# spinning
spinnage = torch.abs(root_angvels[..., 2])
spinnage_reward = 1.0 / (1.0 + spinnage * spinnage)
# combined reward
# uprigness and spinning only matter when close to the target
reward = pos_reward + pos_reward * (up_reward + spinnage_reward)
# resets due to misbehavior
ones = torch.ones_like(reset_buf)
die = torch.zeros_like(reset_buf)
die = torch.where(target_dist > 8.0, ones, die)
die = torch.where(root_positions[..., 2] < 0.5, ones, die)
# resets due to episode length
reset = torch.where(progress_buf >= max_episode_length - 1, ones, die)
return reward, reset