-
Notifications
You must be signed in to change notification settings - Fork 438
/
ball_balance.py
476 lines (387 loc) · 21.9 KB
/
ball_balance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import numpy as np
import os
import torch
import xml.etree.ElementTree as ET
from isaacgym import gymutil, gymtorch, gymapi
from isaacgymenvs.utils.torch_jit_utils import to_torch, torch_rand_float, tensor_clamp, torch_random_dir_2
from .base.vec_task import VecTask
def _indent_xml(elem, level=0):
i = "\n" + level * " "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + " "
if not elem.tail or not elem.tail.strip():
elem.tail = i
for elem in elem:
_indent_xml(elem, level + 1)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = i
class BallBalance(VecTask):
def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render):
self.cfg = cfg
self.max_episode_length = self.cfg["env"]["maxEpisodeLength"]
self.action_speed_scale = self.cfg["env"]["actionSpeedScale"]
self.debug_viz = self.cfg["env"]["enableDebugVis"]
sensors_per_env = 3
actors_per_env = 2
dofs_per_env = 6
bodies_per_env = 7 + 1
# Observations:
# 0:3 - activated DOF positions
# 3:6 - activated DOF velocities
# 6:9 - ball position
# 9:12 - ball linear velocity
# 12:15 - sensor force (same for each sensor)
# 15:18 - sensor torque 1
# 18:21 - sensor torque 2
# 21:24 - sensor torque 3
self.cfg["env"]["numObservations"] = 24
# Actions: target velocities for the 3 actuated DOFs
self.cfg["env"]["numActions"] = 3
super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render)
self.root_tensor = self.gym.acquire_actor_root_state_tensor(self.sim)
self.dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim)
self.sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim)
vec_root_tensor = gymtorch.wrap_tensor(self.root_tensor).view(self.num_envs, actors_per_env, 13)
vec_dof_tensor = gymtorch.wrap_tensor(self.dof_state_tensor).view(self.num_envs, dofs_per_env, 2)
vec_sensor_tensor = gymtorch.wrap_tensor(self.sensor_tensor).view(self.num_envs, sensors_per_env, 6)
self.root_states = vec_root_tensor
self.tray_positions = vec_root_tensor[..., 0, 0:3]
self.ball_positions = vec_root_tensor[..., 1, 0:3]
self.ball_orientations = vec_root_tensor[..., 1, 3:7]
self.ball_linvels = vec_root_tensor[..., 1, 7:10]
self.ball_angvels = vec_root_tensor[..., 1, 10:13]
self.dof_states = vec_dof_tensor
self.dof_positions = vec_dof_tensor[..., 0]
self.dof_velocities = vec_dof_tensor[..., 1]
self.sensor_forces = vec_sensor_tensor[..., 0:3]
self.sensor_torques = vec_sensor_tensor[..., 3:6]
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_dof_state_tensor(self.sim)
self.initial_dof_states = self.dof_states.clone()
self.initial_root_states = vec_root_tensor.clone()
self.dof_position_targets = torch.zeros((self.num_envs, dofs_per_env), dtype=torch.float32, device=self.device, requires_grad=False)
self.all_actor_indices = torch.arange(actors_per_env * self.num_envs, dtype=torch.int32, device=self.device).view(self.num_envs, actors_per_env)
self.all_bbot_indices = actors_per_env * torch.arange(self.num_envs, dtype=torch.int32, device=self.device)
# vis
self.axes_geom = gymutil.AxesGeometry(0.2)
def create_sim(self):
self.dt = self.sim_params.dt
self.sim_params.up_axis = gymapi.UP_AXIS_Z
self.sim_params.gravity.x = 0
self.sim_params.gravity.y = 0
self.sim_params.gravity.z = -9.81
self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params)
self._create_balance_bot_asset()
self._create_ground_plane()
self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs)))
def _create_balance_bot_asset(self):
# there is an asset balance_bot.xml, here we override some features.
tray_radius = 0.5
tray_thickness = 0.02
leg_radius = 0.02
leg_outer_offset = tray_radius - 0.1
leg_length = leg_outer_offset - 2 * leg_radius
leg_inner_offset = leg_outer_offset - leg_length / math.sqrt(2)
tray_height = leg_length * math.sqrt(2) + 2 * leg_radius + 0.5 * tray_thickness
root = ET.Element('mujoco')
root.attrib["model"] = "BalanceBot"
compiler = ET.SubElement(root, "compiler")
compiler.attrib["angle"] = "degree"
compiler.attrib["coordinate"] = "local"
compiler.attrib["inertiafromgeom"] = "true"
worldbody = ET.SubElement(root, "worldbody")
tray = ET.SubElement(worldbody, "body")
tray.attrib["name"] = "tray"
tray.attrib["pos"] = "%g %g %g" % (0, 0, tray_height)
tray_joint = ET.SubElement(tray, "joint")
tray_joint.attrib["name"] = "root_joint"
tray_joint.attrib["type"] = "free"
tray_geom = ET.SubElement(tray, "geom")
tray_geom.attrib["type"] = "cylinder"
tray_geom.attrib["size"] = "%g %g" % (tray_radius, 0.5 * tray_thickness)
tray_geom.attrib["pos"] = "0 0 0"
tray_geom.attrib["density"] = "100"
leg_angles = [0.0, 2.0 / 3.0 * math.pi, 4.0 / 3.0 * math.pi]
for i in range(len(leg_angles)):
angle = leg_angles[i]
upper_leg_from = gymapi.Vec3()
upper_leg_from.x = leg_outer_offset * math.cos(angle)
upper_leg_from.y = leg_outer_offset * math.sin(angle)
upper_leg_from.z = -leg_radius - 0.5 * tray_thickness
upper_leg_to = gymapi.Vec3()
upper_leg_to.x = leg_inner_offset * math.cos(angle)
upper_leg_to.y = leg_inner_offset * math.sin(angle)
upper_leg_to.z = upper_leg_from.z - leg_length / math.sqrt(2)
upper_leg_pos = (upper_leg_from + upper_leg_to) * 0.5
upper_leg_quat = gymapi.Quat.from_euler_zyx(0, -0.75 * math.pi, angle)
upper_leg = ET.SubElement(tray, "body")
upper_leg.attrib["name"] = "upper_leg" + str(i)
upper_leg.attrib["pos"] = "%g %g %g" % (upper_leg_pos.x, upper_leg_pos.y, upper_leg_pos.z)
upper_leg.attrib["quat"] = "%g %g %g %g" % (upper_leg_quat.w, upper_leg_quat.x, upper_leg_quat.y, upper_leg_quat.z)
upper_leg_geom = ET.SubElement(upper_leg, "geom")
upper_leg_geom.attrib["type"] = "capsule"
upper_leg_geom.attrib["size"] = "%g %g" % (leg_radius, 0.5 * leg_length)
upper_leg_geom.attrib["density"] = "1000"
upper_leg_joint = ET.SubElement(upper_leg, "joint")
upper_leg_joint.attrib["name"] = "upper_leg_joint" + str(i)
upper_leg_joint.attrib["type"] = "hinge"
upper_leg_joint.attrib["pos"] = "%g %g %g" % (0, 0, -0.5 * leg_length)
upper_leg_joint.attrib["axis"] = "0 1 0"
upper_leg_joint.attrib["limited"] = "true"
upper_leg_joint.attrib["range"] = "-45 45"
lower_leg_pos = gymapi.Vec3(-0.5 * leg_length, 0, 0.5 * leg_length)
lower_leg_quat = gymapi.Quat.from_euler_zyx(0, -0.5 * math.pi, 0)
lower_leg = ET.SubElement(upper_leg, "body")
lower_leg.attrib["name"] = "lower_leg" + str(i)
lower_leg.attrib["pos"] = "%g %g %g" % (lower_leg_pos.x, lower_leg_pos.y, lower_leg_pos.z)
lower_leg.attrib["quat"] = "%g %g %g %g" % (lower_leg_quat.w, lower_leg_quat.x, lower_leg_quat.y, lower_leg_quat.z)
lower_leg_geom = ET.SubElement(lower_leg, "geom")
lower_leg_geom.attrib["type"] = "capsule"
lower_leg_geom.attrib["size"] = "%g %g" % (leg_radius, 0.5 * leg_length)
lower_leg_geom.attrib["density"] = "1000"
lower_leg_joint = ET.SubElement(lower_leg, "joint")
lower_leg_joint.attrib["name"] = "lower_leg_joint" + str(i)
lower_leg_joint.attrib["type"] = "hinge"
lower_leg_joint.attrib["pos"] = "%g %g %g" % (0, 0, -0.5 * leg_length)
lower_leg_joint.attrib["axis"] = "0 1 0"
lower_leg_joint.attrib["limited"] = "true"
lower_leg_joint.attrib["range"] = "-70 90"
_indent_xml(root)
ET.ElementTree(root).write("balance_bot.xml")
# save some useful robot parameters
self.tray_height = tray_height
self.leg_radius = leg_radius
self.leg_length = leg_length
self.leg_outer_offset = leg_outer_offset
self.leg_angles = leg_angles
def _create_ground_plane(self):
plane_params = gymapi.PlaneParams()
plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0)
self.gym.add_ground(self.sim, plane_params)
def _create_envs(self, num_envs, spacing, num_per_row):
lower = gymapi.Vec3(-spacing, -spacing, 0.0)
upper = gymapi.Vec3(spacing, spacing, spacing)
asset_root = "."
asset_file = "balance_bot.xml"
asset_path = os.path.join(asset_root, asset_file)
asset_root = os.path.dirname(asset_path)
asset_file = os.path.basename(asset_path)
bbot_options = gymapi.AssetOptions()
bbot_options.fix_base_link = False
bbot_options.slices_per_cylinder = 40
bbot_asset = self.gym.load_asset(self.sim, asset_root, asset_file, bbot_options)
# printed view of asset built
# self.gym.debug_print_asset(bbot_asset)
self.num_bbot_dofs = self.gym.get_asset_dof_count(bbot_asset)
bbot_dof_props = self.gym.get_asset_dof_properties(bbot_asset)
self.bbot_dof_lower_limits = []
self.bbot_dof_upper_limits = []
for i in range(self.num_bbot_dofs):
self.bbot_dof_lower_limits.append(bbot_dof_props['lower'][i])
self.bbot_dof_upper_limits.append(bbot_dof_props['upper'][i])
self.bbot_dof_lower_limits = to_torch(self.bbot_dof_lower_limits, device=self.device)
self.bbot_dof_upper_limits = to_torch(self.bbot_dof_upper_limits, device=self.device)
bbot_pose = gymapi.Transform()
bbot_pose.p.z = self.tray_height
# create force sensors attached to the tray body
bbot_tray_idx = self.gym.find_asset_rigid_body_index(bbot_asset, "tray")
for angle in self.leg_angles:
sensor_pose = gymapi.Transform()
sensor_pose.p.x = self.leg_outer_offset * math.cos(angle)
sensor_pose.p.y = self.leg_outer_offset * math.sin(angle)
self.gym.create_asset_force_sensor(bbot_asset, bbot_tray_idx, sensor_pose)
# create ball asset
self.ball_radius = 0.1
ball_options = gymapi.AssetOptions()
ball_options.density = 200
ball_asset = self.gym.create_sphere(self.sim, self.ball_radius, ball_options)
self.envs = []
self.bbot_handles = []
self.obj_handles = []
for i in range(self.num_envs):
# create env instance
env_ptr = self.gym.create_env(
self.sim, lower, upper, num_per_row
)
bbot_handle = self.gym.create_actor(env_ptr, bbot_asset, bbot_pose, "bbot", i, 0, 0)
actuated_dofs = np.array([1, 3, 5])
free_dofs = np.array([0, 2, 4])
dof_props = self.gym.get_actor_dof_properties(env_ptr, bbot_handle)
dof_props['driveMode'][actuated_dofs] = gymapi.DOF_MODE_POS
dof_props['stiffness'][actuated_dofs] = 4000.0
dof_props['damping'][actuated_dofs] = 100.0
dof_props['driveMode'][free_dofs] = gymapi.DOF_MODE_NONE
dof_props['stiffness'][free_dofs] = 0
dof_props['damping'][free_dofs] = 0
self.gym.set_actor_dof_properties(env_ptr, bbot_handle, dof_props)
lower_leg_handles = []
lower_leg_handles.append(self.gym.find_actor_rigid_body_handle(env_ptr, bbot_handle, "lower_leg0"))
lower_leg_handles.append(self.gym.find_actor_rigid_body_handle(env_ptr, bbot_handle, "lower_leg1"))
lower_leg_handles.append(self.gym.find_actor_rigid_body_handle(env_ptr, bbot_handle, "lower_leg2"))
# create attractors to hold the feet in place
attractor_props = gymapi.AttractorProperties()
attractor_props.stiffness = 5e7
attractor_props.damping = 5e3
attractor_props.axes = gymapi.AXIS_TRANSLATION
for j in range(3):
angle = self.leg_angles[j]
attractor_props.rigid_handle = lower_leg_handles[j]
# attractor world pose to keep the feet in place
attractor_props.target.p.x = self.leg_outer_offset * math.cos(angle)
attractor_props.target.p.z = self.leg_radius
attractor_props.target.p.y = self.leg_outer_offset * math.sin(angle)
# attractor local pose in lower leg body
attractor_props.offset.p.z = 0.5 * self.leg_length
self.gym.create_rigid_body_attractor(env_ptr, attractor_props)
ball_pose = gymapi.Transform()
ball_pose.p.x = 0.2
ball_pose.p.z = 2.0
ball_handle = self.gym.create_actor(env_ptr, ball_asset, ball_pose, "ball", i, 0, 0)
self.obj_handles.append(ball_handle)
# pretty colors
self.gym.set_rigid_body_color(env_ptr, ball_handle, 0, gymapi.MESH_VISUAL, gymapi.Vec3(0.99, 0.66, 0.25))
self.gym.set_rigid_body_color(env_ptr, bbot_handle, 0, gymapi.MESH_VISUAL, gymapi.Vec3(0.48, 0.65, 0.8))
for j in range(1, 7):
self.gym.set_rigid_body_color(env_ptr, bbot_handle, j, gymapi.MESH_VISUAL, gymapi.Vec3(0.15, 0.2, 0.3))
self.envs.append(env_ptr)
self.bbot_handles.append(bbot_handle)
def compute_observations(self):
#print("~!~!~!~! Computing obs")
actuated_dof_indices = torch.tensor([1, 3, 5], device=self.device)
#print(self.dof_states[:, actuated_dof_indices, :])
self.obs_buf[..., 0:3] = self.dof_positions[..., actuated_dof_indices]
self.obs_buf[..., 3:6] = self.dof_velocities[..., actuated_dof_indices]
self.obs_buf[..., 6:9] = self.ball_positions
self.obs_buf[..., 9:12] = self.ball_linvels
self.obs_buf[..., 12:15] = self.sensor_forces[..., 0] / 20 # !!! lousy normalization
self.obs_buf[..., 15:18] = self.sensor_torques[..., 0] / 20 # !!! lousy normalization
self.obs_buf[..., 18:21] = self.sensor_torques[..., 1] / 20 # !!! lousy normalization
self.obs_buf[..., 21:24] = self.sensor_torques[..., 2] / 20 # !!! lousy normalization
return self.obs_buf
def compute_reward(self):
self.rew_buf[:], self.reset_buf[:] = compute_bbot_reward(
self.tray_positions,
self.ball_positions,
self.ball_linvels,
self.ball_radius,
self.reset_buf, self.progress_buf, self.max_episode_length
)
def reset_idx(self, env_ids):
num_resets = len(env_ids)
# reset bbot and ball root states
self.root_states[env_ids] = self.initial_root_states[env_ids]
min_d = 0.001 # min horizontal dist from origin
max_d = 0.5 # max horizontal dist from origin
min_height = 1.0
max_height = 2.0
min_horizontal_speed = 0
max_horizontal_speed = 5
dists = torch_rand_float(min_d, max_d, (num_resets, 1), self.device)
dirs = torch_random_dir_2((num_resets, 1), self.device)
hpos = dists * dirs
speedscales = (dists - min_d) / (max_d - min_d)
hspeeds = torch_rand_float(min_horizontal_speed, max_horizontal_speed, (num_resets, 1), self.device)
hvels = -speedscales * hspeeds * dirs
vspeeds = -torch_rand_float(5.0, 5.0, (num_resets, 1), self.device).squeeze()
self.ball_positions[env_ids, 0] = hpos[..., 0]
self.ball_positions[env_ids, 2] = torch_rand_float(min_height, max_height, (num_resets, 1), self.device).squeeze()
self.ball_positions[env_ids, 1] = hpos[..., 1]
self.ball_orientations[env_ids, 0:3] = 0
self.ball_orientations[env_ids, 3] = 1
self.ball_linvels[env_ids, 0] = hvels[..., 0]
self.ball_linvels[env_ids, 2] = vspeeds
self.ball_linvels[env_ids, 1] = hvels[..., 1]
self.ball_angvels[env_ids] = 0
# reset root state for bbots and balls in selected envs
actor_indices = self.all_actor_indices[env_ids].flatten()
self.gym.set_actor_root_state_tensor_indexed(self.sim, self.root_tensor, gymtorch.unwrap_tensor(actor_indices), len(actor_indices))
# reset DOF states for bbots in selected envs
bbot_indices = self.all_bbot_indices[env_ids].flatten()
self.dof_states[env_ids] = self.initial_dof_states[env_ids]
self.gym.set_dof_state_tensor_indexed(self.sim, self.dof_state_tensor, gymtorch.unwrap_tensor(bbot_indices), len(bbot_indices))
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def pre_physics_step(self, _actions):
# resets
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
actions = _actions.to(self.device)
actuated_indices = torch.LongTensor([1, 3, 5])
# update position targets from actions
self.dof_position_targets[..., actuated_indices] += self.dt * self.action_speed_scale * actions
self.dof_position_targets[:] = tensor_clamp(self.dof_position_targets, self.bbot_dof_lower_limits, self.bbot_dof_upper_limits)
# reset position targets for reset envs
self.dof_position_targets[reset_env_ids] = 0
self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(self.dof_position_targets))
def post_physics_step(self):
self.progress_buf += 1
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_dof_state_tensor(self.sim)
self.gym.refresh_force_sensor_tensor(self.sim)
self.compute_observations()
self.compute_reward()
# vis
if self.viewer and self.debug_viz:
self.gym.clear_lines(self.viewer)
for i in range(self.num_envs):
env = self.envs[i]
bbot_handle = self.bbot_handles[i]
body_handles = []
body_handles.append(self.gym.find_actor_rigid_body_handle(env, bbot_handle, "upper_leg0"))
body_handles.append(self.gym.find_actor_rigid_body_handle(env, bbot_handle, "upper_leg1"))
body_handles.append(self.gym.find_actor_rigid_body_handle(env, bbot_handle, "upper_leg2"))
for lhandle in body_handles:
lpose = self.gym.get_rigid_transform(env, lhandle)
gymutil.draw_lines(self.axes_geom, self.gym, self.viewer, env, lpose)
#####################################################################
###=========================jit functions=========================###
#####################################################################
@torch.jit.script
def compute_bbot_reward(tray_positions, ball_positions, ball_velocities, ball_radius, reset_buf, progress_buf, max_episode_length):
# type: (Tensor, Tensor, Tensor, float, Tensor, Tensor, float) -> Tuple[Tensor, Tensor]
# calculating the norm for ball distance to desired height above the ground plane (i.e. 0.7)
ball_dist = torch.sqrt(ball_positions[..., 0] * ball_positions[..., 0] +
(ball_positions[..., 2] - 0.7) * (ball_positions[..., 2] - 0.7) +
(ball_positions[..., 1]) * ball_positions[..., 1])
ball_speed = torch.sqrt(ball_velocities[..., 0] * ball_velocities[..., 0] +
ball_velocities[..., 1] * ball_velocities[..., 1] +
ball_velocities[..., 2] * ball_velocities[..., 2])
pos_reward = 1.0 / (1.0 + ball_dist)
speed_reward = 1.0 / (1.0 + ball_speed)
reward = pos_reward * speed_reward
reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset_buf)
reset = torch.where(ball_positions[..., 2] < ball_radius * 1.5, torch.ones_like(reset_buf), reset)
return reward, reset