forked from ymgaq/Pyaq
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlearn.py
executable file
·225 lines (181 loc) · 8.01 KB
/
learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
from sys import stderr, stdout
import time
from board import *
import model
import numpy as np
from sgf import sgf2feed, import_sgf
import tensorflow.compat.v1 as tf
rnd_array = [np.arange(BVCNT + 1)]
for i in range(1, 8):
rnd_array.append(rnd_array[i - 1])
rot_array = rnd_array[i][:BVCNT].reshape(BSIZE, BSIZE)
if i % 2 == 0:
rot_array = rot_array.transpose(1, 0)
else:
rot_array = rot_array[::-1, :]
rnd_array[i][:BVCNT] = rot_array.reshape(BVCNT)
class Feed(object):
def __init__(self, f_, m_, r_):
self._feature = f_
self._move = m_
self._result = r_
self.size = self._feature.shape[0]
self._idx = 0
self._perm = np.arange(self.size)
np.random.shuffle(self._perm)
def next_batch(self, batch_size=128):
if self._idx > self.size:
np.random.shuffle(self._perm)
self._idx = 0
start = self._idx
self._idx += batch_size
end = self._idx
rnd_cnt = np.random.choice(np.arange(8))
f_batch = self._feature[self._perm[start:end]] # slice for mini-batch
f_batch = f_batch[:, rnd_array[rnd_cnt][:BVCNT]].astype(np.float32)
m_batch = self._move[self._perm[start:end]] # slice for mini-batch
m_batch = m_batch[:, rnd_array[rnd_cnt]].astype(np.float32)
r_batch = self._result[self._perm[start:end]].astype(np.float32)
return f_batch, m_batch, r_batch
def average_gradients(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g, _ in grad_and_vars:
grads.append(tf.expand_dims(g, 0))
grad = tf.reduce_mean(tf.concat(grads, 0), 0)
v = grad_and_vars[0][1]
average_grads.append((grad, v))
return average_grads
def stdout_log(str):
stdout.write(str)
log_file = open("log.txt", "a")
log_file.write(str)
log_file.close()
def learn(lr_=1e-4, dr_=0.7, sgf_dir="sgf/", use_gpu=True, gpu_cnt=1):
device_name = "gpu" if use_gpu else "cpu"
with tf.get_default_graph().as_default(), tf.device("/cpu:0"):
# placeholders
f_list = []
r_list = []
m_list = []
for gpu_idx in range(gpu_cnt):
f_list.append(tf.placeholder(
"float", shape=[None, BVCNT, FEATURE_CNT],
name="feature_%d" % gpu_idx))
r_list.append(tf.placeholder(
"float", shape=[None], name="result_%d" % gpu_idx))
m_list.append(tf.placeholder(
"float", shape=[None, BVCNT + 1], name="move_%d" % gpu_idx))
lr = tf.placeholder(tf.float32, shape=[], name="learning_rate")
opt = tf.train.AdamOptimizer(lr)
dn = model.DualNetwork()
# compute and apply gradients
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
for gpu_idx in range(gpu_cnt):
with tf.device("/%s:%d" % (device_name, gpu_idx)):
policy_, value_ = dn.model(
f_list[gpu_idx], temp=1.0, dr=dr_)
policy_ = tf.clip_by_value(policy_, 1e-6, 1)
loss_p = -tf.reduce_mean(tf.log(
tf.reduce_sum(tf.multiply(m_list[gpu_idx], policy_), 1)))
loss_v = tf.reduce_mean(
tf.square(tf.subtract(value_, r_list[gpu_idx])))
if gpu_idx == 0:
vars_train = tf.get_collection("vars_train")
loss_l2 = tf.add_n([tf.nn.l2_loss(v) for v in vars_train])
loss = loss_p + 0.05 * loss_v + 1e-4 * loss_l2
tower_grads.append(opt.compute_gradients(loss))
tf.get_variable_scope().reuse_variables()
train_op = opt.apply_gradients(average_gradients(tower_grads))
# calculate accuracy
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
with tf.device("/%s:0" % device_name):
f_acc = tf.placeholder(
"float", shape=[None, BVCNT, FEATURE_CNT], name="feature_acc")
m_acc = tf.placeholder(
"float", shape=[None, BVCNT + 1], name="move_acc")
r_acc = tf.placeholder(
"float", shape=[None], name="result_acc")
p_, v_ = dn.model(f_acc, temp=1.0, dr=1.0)
prediction = tf.equal(tf.reduce_max(p_, 1),
tf.reduce_max(tf.multiply(p_, m_acc), 1))
accuracy_p = tf.reduce_mean(tf.cast(prediction, "float"))
accuracy_v = tf.reduce_mean(tf.square(tf.subtract(v_, r_acc)))
accuracy = (accuracy_p, accuracy_v)
sess = dn.create_sess()
# load sgf and convert to feed
# sgf_train_list = import_sgf(os.path.join(sgf_dir, "train"))
# sgf_test_list = import_sgf(os.path.join(sgf_dir, "test"))
sgf_list = import_sgf(sgf_dir)
sgf_cnt = len(sgf_list)
stdout_log("imported %d sgf files.\n" % sgf_cnt)
sgf_train = [sgf_list[i] for i in range(sgf_cnt) if i % 100 != 0] # 99%
sgf_test = [sgf_list[i] for i in range(sgf_cnt) if i % 100 == 0] # 1%
stdout.write("converting ...\n")
feed = [Feed(*(sgf2feed(sgf_train))), Feed(*(sgf2feed(sgf_test)))]
feed_cnt = feed[0].size
# learning settings
batch_cnt = 128
total_epochs = 8 * 5
epoch_steps = feed_cnt // (batch_cnt * gpu_cnt)
total_steps = total_epochs * epoch_steps
global_step_idx = 0
learning_rate = lr_
stdout_log("learning rate=%.1g\n" % (learning_rate))
start_time = time.time()
# training
for epoch_idx in range(total_epochs):
if epoch_idx > 0 and (epoch_idx - 8) % 8 == 0:
learning_rate *= 0.5
stdout_log("learning rate=%.1g\n" % (learning_rate))
for step_idx in range(epoch_steps):
feed_dict_ = {}
feed_dict_[lr] = learning_rate
for gpu_idx in range(gpu_cnt):
batch = feed[0].next_batch(batch_cnt)
feed_dict_[f_list[gpu_idx]] = np.array(batch[0])
feed_dict_[m_list[gpu_idx]] = np.array(batch[1])
feed_dict_[r_list[gpu_idx]] = np.array(batch[2])
sess.run(train_op, feed_dict=feed_dict_)
global_step_idx += 1
if global_step_idx % (total_steps // 1000) == 0:
progress_now = float(global_step_idx) / total_steps * 100
str_log = "progress: %03.2f[%%] " % (progress_now)
elapsed_time = time.time() - start_time
str_log += "%03.1f" % (elapsed_time) + "[sec]"
stdout_log("%s\n" % (str_log))
start_time = time.time()
# if global_step_idx % 10 == 0:
# dn.save_vars(sess, "model.ckpt")
str_log = ""
# str_summary = "%3.3f" % (float(global_step_idx) / total_steps * 100)
acc_steps = feed[1].size // batch_cnt
np.random.shuffle(feed[0]._perm)
for i in range(2):
acc_str = "train" if i == 0 else "test "
acc_sum = [0.0, 0.0]
for _ in range(acc_steps):
acc_batch = feed[i].next_batch(batch_cnt)
accur = sess.run(
accuracy, feed_dict={f_acc: acc_batch[0],
m_acc: acc_batch[1],
r_acc: acc_batch[2]})
acc_sum[0] += accur[0]
acc_sum[1] += accur[1]
str_log += "%s: policy=%3.2f[%%] value=%.3f\n" \
% (acc_str,
acc_sum[0] / acc_steps * 100,
acc_sum[1] / acc_steps / 2)
# str_summary += "\t%3.3f\t%3.3f" \
# % (acc_sum[0] / acc_steps * 100,
# acc_sum[1] / acc_steps / 2)
stdout_log("%s\n" % (str_log))
# log_file = open("log_summary.txt", "aw")
# log_file.write("%s\n" % (str_summary))
# log_file.close()
dn.save_vars(sess, "model.ckpt")