-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar_run.py
165 lines (134 loc) · 4.55 KB
/
cifar_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""Train CIFAR10 with PyTorch."""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import os
import argparse
from cifar_utils import (
progress_bar,
cifar_data,
cifar_experiment_results,
flat_net_items,
)
from cifar_model import *
parser = argparse.ArgumentParser(description="PyTorch CIFAR10 Training")
parser.add_argument("--lr", default=0.1, type=float, help="learning rate")
parser.add_argument(
"--resume", "-r", action="store_true", help="resume from checkpoint"
)
args = parser.parse_args()
###############
# cuda recommended for conv experiments
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"==> Running on device {device}.")
NUM_TRAIN_EPOCHS = 200
# default path where everything is stored
PATH = "./scaling/dataset-cifar/act-relu/"
# Data
print("==> Preparing data.")
trainloader, testloader = cifar_data()
_depths = [8, 11, 12, 14, 16, 18, 20, 24, 28, 33, 42, 50, 65, 80, 100, 121]
def get_resnet(depth: int = 18):
assert depth in _depths, f"Depths allowed: {_depths}, unknown value: {depth}."
return eval(f"Net{depth}")()
def train_and_test(
net,
epoch,
trainloader,
testloader,
criterion,
optimizer,
scheduler,
path_with_depth,
):
print("\nEpoch: %d" % epoch)
# Train
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
train_acc = 100.0 * correct / total
progress_bar(
batch_idx,
len(trainloader),
"(Train) Loss: %.3f | (Train) Acc: %.3f%% (%d/%d)"
% (train_loss / (batch_idx + 1), train_acc, correct, total),
)
# Test
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
test_acc = 100.0 * correct / total
progress_bar(
batch_idx,
len(testloader),
"(Test) Loss: %.3f | (Test) Acc: %.3f%% (%d/%d)"
% (test_loss / (batch_idx + 1), test_acc, correct, total),
)
if epoch == NUM_TRAIN_EPOCHS - 1:
if not os.path.exists(path_with_depth + f"epoch_{epoch:03d}/"):
os.makedirs(path_with_depth + f"epoch_{epoch:03d}/")
print("Saving train and test accuracies..")
torch.save(
{"train_acc": train_acc, "test_acc": test_acc, "epoch": epoch},
path_with_depth + f"epoch_{epoch:03d}/acc.pth",
)
print("Saving net items..")
torch.save(
flat_net_items(net.module), path_with_depth + f"epoch_{epoch:03d}/items.pth"
)
# Scheduler
scheduler.step()
DEPTHS = _depths
if __name__ == "__main__":
for depth in DEPTHS:
path_with_depth = PATH + f"depth_{depth:03d}/"
if not os.path.exists(path_with_depth):
os.makedirs(path_with_depth)
print(f"\n====> All elements will be saved to {path_with_depth}.")
print(f"\n====> Building model.")
net = get_resnet(depth)
net = net.to(device)
if device == "cuda":
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
print(f"\n====> Created a network of effective depth {depth}.")
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
for epoch in range(NUM_TRAIN_EPOCHS):
train_and_test(
net,
epoch,
trainloader,
testloader,
criterion,
optimizer,
scheduler,
path_with_depth,
)
cifar_experiment_results(net=net, path=path_with_depth)