-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsaliency_map_deconv.py
90 lines (57 loc) · 2.16 KB
/
saliency_map_deconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# -*- coding: utf-8 -*-
import numpy as np
from models import get_model
from torchsummary import summary
import torch, utils, cv2
from torchvision import transforms
import matplotlib.pyplot as plt
from torch.nn import ReLU
class DeconvBackprop():
def __init__(self, model):
self.model = model
self.gradients = None
self.model.eval()
self.relu_activations = []
self.adjust_relu_layer()
self.hook_layer()
def adjust_relu_layer(self):
def backward_fn(module, grad_in, grad_out):
output = torch.clamp(grad_out[0], min=0.0)
return (output, )
for module in self.model.features.children():
if isinstance(module, ReLU):
module.register_backward_hook(backward_fn)
def hook_layer(self):
def hook_fn(module, grad_in, grad_out):
# grad_in: (input, weights, bias)
self.gradients = grad_in[0]
if "features" in dict(list(self.model.named_children())):
first_layer = list(self.model.features.children())[0]
else:
first_layer = list(self.model.children())[0]
first_layer.register_backward_hook(hook_fn)
def generate_gradients(self, model_input, target_class):
model_output = self.model(model_input)
print(model_output.data.max(1)[1].item(), target_class)
#assert(model_output.data.max(1)[1].item() == target_class)
self.model.zero_grad()
mask = torch.zeros(model_output.size(), dtype=torch.float32).cuda()
mask[0][target_class] = 1.0
model_output.backward(gradient=mask)
gradients_as_arr = self.gradients.data.cpu().numpy()[0]
return gradients_as_arr
if __name__ == "__main__":
examples = [('./inputs/dog.png', 263), ('./inputs/elephant.jpg', 101)]
idx = 0
img_path = examples[idx][0]
img_label = examples[idx][1]
img = cv2.imread(img_path)
print(img.shape)
prep_img = transforms.ToTensor()(img)
prep_img = torch.unsqueeze(prep_img, 0).cuda()
prep_img.requires_grad_(True)
model = get_model('vgg16')
VBP = DeconvBackprop(model)
gradients = VBP.generate_gradients(prep_img, img_label)
utils.show_color_gradients(gradients, "%s_guided_backpropagation_color"%img_path.split('.')[0])
utils.show_gray_gradients(gradients, "%s_guided_backpropagation_gray"%img_path.split('.')[0])